Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; : 133037, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897523

ABSTRACT

With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight. Although environmental factors are increasingly driving the application of circular economy concepts in materials science, lignin is an underutilized but promising environmentally benign electrode material for supercapacitors. Lignin-based carbon nanofibers are ideal for preparing high-performance supercapacitor electrode materials owing to their unique chemical stability, abundance, and environmental friendliness. Electrospinning is a well-known technique for producing large quantities of uniform lignin-based nanofibers, and is the simplest method for the large-scale production of lignin-based carbon nanofibers with specific diameters. This paper reviews the latest research progress in the preparation of lignin-based carbon nanofibers using the electrospinning technology, discusses the prospects of their application in supercapacitors, and analyzes the current challenges and future development directions. This is expected to have an enlightening effect on subsequent research.

2.
Int J Biol Macromol ; 265(Pt 2): 131085, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521335

ABSTRACT

In contrast to conventional particles characterized by isotropic surfaces, Janus particles possess anisotropic surfaces, resulting in unique physicochemical properties and functional attributes. In recent times, there has been a surge in interest regarding the synthesis of Janus particles using biological macromolecules. Various synthesis techniques have been developed for the fabrication of Janus materials derived from biomass. These methods include electrospinning, freeze-drying, secondary casting film formation, self-assembly technology, and other approaches. In the realm of Janus composite materials, those derived from biomass have found extensive applications in diverse domains including oil-water separation, sensors, photocatalysis, and medical materials. This article provides a systematic introduction to the classification of Janus materials, with a specific focus on various types of biomass-based Janus materials (mainly cellulose-based Janus materials, lignin-based Janus materials and protein-based Janus materials) and the methods used for their preparation. This work will not only deepen the understanding of biomass-based Janus materials, but also contribute to the development of new methods for designing biomass-based Janus structures to optimize biomass utilization.


Subject(s)
Cellulose , Multifunctional Nanoparticles , Biomass , Lignin/chemistry , Technology
3.
Polymers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337282

ABSTRACT

Imidazole ionic liquids (ILs) have good affinity and good solubility for carbon dioxide (CO2). Such ionic liquids, combined with polyimide membrane materials, can solve the problem that, today, CO2 is difficult to separate and recover. In this study, the ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (IL1), 1-pentyl-3-methylimidazolium tetrafluoroborate (IL2), 1-octyl-3-methylimidazolium tetrafluoroborate (IL3), and 1-dodecylimidazolium tetrafluoroborate (IL4) with different contents were added to a polyimide matrix, and a series of polyimide membranes blended with ionic liquid were prepared using a high-speed mixer. The mechanical properties and gas separation permeability of the membranes were investigated. Among them, the selectivity of the PI/IL3 membrane for CO2/CH4 was 180.55, which was 2.5 times higher than the PI membrane, and its CO2 permeability was 16.25 Barrer, which exceeded the Robeson curve in 2008; the separation performance of the membrane was the best in this work.

4.
Int J Biol Macromol ; 214: 45-53, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35709873

ABSTRACT

Reuse of biochar residues after lignin degradation will not only save costs but also reduce the pollution, protect and improve the environment. In this study, biochar residue (BR) after peanut shell lignin selective depolymerization on ZSM-5 were recycled, and characterized by Scanning Electron Microscopy, Surface area & pore size distribution analyzers, Thermogravimetric Analysis. Subsequently, a series of hybrid matrix membranes were prepared using ethyl cellulose as the matrix and biochar residue after depolymerization under different reaction conditions as the filler. The separation performance of BR/EC membranes for CO2/CH4 mixed gas and CO2/N2 mixed gas was measured. The results showed that the gas separation membranes prepared with biochar residue (3 h, 300 °C) as filler had good gas separation characteristics. The resulting mixed-matrix membrane exhibited a permeability of 66.00 Barrer for CO2 and selectivities of 9.97 for CO2/CH4. Meanwhile, the resulting mixed-matrix membrane exhibited a permeability of 79.53 Barrer for CO2 and selectivities of 20.01 for CO2/N2. Both exceed the upper limit of known pure EC membranes. Therefore, the use of biochar residue after ZSM-5 depolymerization as a filler for gas separation membranes is a feasible way. Furthermore, the membrane is well stabilized, proving its good potential for industrial applications.


Subject(s)
Carbon Dioxide , Lignin , Biomass , Charcoal
5.
Membranes (Basel) ; 12(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35207111

ABSTRACT

In this paper, superhydrophilic polyimide (PI) membranes were prepared using the electrostatic spinning method, capped with a hydrophilic ionic liquid (IL), and blended with polyvinylpyrrolidone (PVP). Using this preparation, the surface of the fiber membranes was coated in polydopamine (PDA) by means of an in-growth method. Scanning electron micrographs showed prepared blend films can form continuous fibers, for whom the distributions of diameter and pore were uniform. Post-modification (carried out by adding hydrophilic substances), the ability of the membrane surface to adhere to water was also significantly improved. The water contact angle was reduced from 128.97 ± 3.86° in unmodified PI to 30.26 ± 2.16°. In addition, they displayed a good separation effect on emulsified oil/water mixtures. The membrane flux reached a maximum value of 290 L·m-2·h-1, with a maximum separation efficiency reached of more than 99%. After being recycled 10 times, the separation efficiency maintained a level exceeding 95%. The purpose of this study is to demonstrate the simplicity and efficiency of this experiment, thereby providing new ideas for the future application of membrane separation technology in wastewater treatment.

6.
ACS Omega ; 7(4): 3626-3633, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128270

ABSTRACT

Excessive CO2 emissions have resulted in global warming and are a serious threat to the life of people, various strategies have been implemented to cut carbon emissions, and one of them is the use of a gas separation membrane to capture CO2 effectively. In this experiment, the butadiene-bridged polymethylsiloxane (BBPMS)/ethyl cellulose (EC)/ionic liquid (IL) ternary composite membranes were prepared by EC as a substrate, BBPMS, and IL as additives in tetrahydrofuran under high-speed stirring and coated on the membrane. The membrane structure was characterized by a Fourier transform infrared spectrometer and scanning electron microscope, and the membrane properties were tested by a membrane tensile strength tester, thermal weight loss analyzer, and gas permeability meter. The results show that the surface of the ternary composite membrane is dense and flat with a uniform distribution, and the membrane formation, heat resistance, and mechanical properties are good. The permeability coefficient of the ternary composite membrane for CO2 reached 1806.03 Barrer, which is 20.00 times higher than that of the EC/IL hybrid matrix membrane. The permeability coefficient of O2 reached 321.01 Barrer, which is 19.21 times higher than that of the EC/IL membrane. When the doping amount of BBPMS is 70-80%, the O2/N2 gas permeation separation of the BBPMS/EC/IL ternary composite membrane is close to the Robertson 2008 curve. It is always known that in the gas separation process the membrane material is the most crucial factor. The success of this experiment points to a new direction for the preparation of new membrane materials.

7.
ACS Omega ; 6(30): 19553-19558, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34368541

ABSTRACT

The synthesis of poly(methyhydrosiloxane) (PMHS) and N,N'-bis(3-allyl)pyromellitic diimide was optimized for O2/N2 separation. The membrane exhibits excellent mechanical and thermal properties and shows an O2/N2 selectivity of up to 4.44 with an O2 permeability of 31.0 Barrer; compared with polydimethylsiloxane (PDMS) and pure polyimide (PI) membranes, the separation selectivity shows a 107% increase for PDMS, and the permeation shows a 660% increase for pure PI. The obtained results were well above the ones reported on the literature for similar conditions opening the door for the preparation of a stable polysiloxane (PMHS-I) gas separation membrane with extraordinary O2/N2 separation performance.

8.
ACS Omega ; 6(19): 12500-12506, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34056399

ABSTRACT

Cellulose acetate (CA) grafted with imidazole ionic liquids (CA-ILs) was synthesized by reacting CA with imidazole ionic liquids ([HO2CMmim]Cl, [HO2CEtmim]Cl, and [HO2CMmim]Br) by using tetrahydrofuran (THF) as the solvent and pyridine as the catalyst. The CA and CA-IL films were fabricated by using the casting solution method. The CA-IL films exhibited good film forming ability and mechanical properties. The successful grafting of CA with imidazole ionic liquids was confirmed by Fourier transform infrared (FTIR), 1H NMR, scanning electron microscopy (SEM), and elemental analysis, and the grafting degrees were 2.24, 2.45, and 3.30%, respectively. The CO2 permeation properties of the CA-IL films were 65.5, 105.6, and 88.3 Barrer, increased up to 2.0, 3.2, and 2.7 times, respectively, as compared to pure CA (32.6 Barrer). The CO2/CH4 selectivities of the CA-IL films were 15.6, 12.6, and 19.2, increased up to 1.7, 1.4, and 2.1 times, respectively, as compared to pure CA (9.26). Therefore, it can be concluded that the imidazole ionic liquids are immensely useful for improving the gas separation performance of CA films.

9.
Membranes (Basel) ; 12(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35054560

ABSTRACT

The preparation, characterization and gas separation properties of mixed matrix membranes (MMMs) were obtained from polyimide capped with ionic liquid and blended with metal-organic frameworks (MOFs). The synthesized MOF was amine functionalized to produce UiO-66-NH2, and its amino group has a higher affinity for CO2. Mixed matrix membranes exhibited good membrane forming ability, heat resistance and mechanical properties. The polyimide membrane exclusively capped by ionic liquid exhibited good permselectivity of 74.1 for CO2/CH4, which was 6.2 times that of the pure polyimide membrane. It is worth noting that MMM blended with UiO-66-NH2 demonstrated the highest ideal selectivity for CO2/CH4 (95.1) with a CO2 permeability of 7.61 Barrer, which is close to the 2008 Robeson upper bound. The addition of UiO-66-NH2 and ionic liquid enhanced the permselectivity of MMMs, which may be one of the promising technologies for high performance CO2/CH4 gas separation.

10.
Appl Environ Microbiol ; 86(15)2020 07 20.
Article in English | MEDLINE | ID: mdl-32414803

ABSTRACT

Androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD) are valuable steroid pharmaceutical intermediates obtained by soybean phytosterol biotransformation by Mycobacterium Cyclodextrins (CDs) are generally believed to be carriers for phytosterol delivery and can improve the production of AD and ADD due to their effects on steroid solubilization and alteration in cell wall permeability for steroids. To better understand the mechanisms of CD promotion, we performed proteomic quantification of the effects of hydroxypropyl-ß-CD (HP-ß-CD) on phytosterol metabolism in Mycobacterium neoaurum TCCC 11978 C2. Perturbations are observed in steroid catabolism and glucose metabolism by adding HP-ß-CD in a phytosterol bioconversion system. AD and ADD, as metabolic products of phytosterol, are toxic to cells, with inhibited cell growth and biocatalytic activity. Treatment of mycobacteria with HP-ß-CD relieves the inhibitory effect of AD(D) on the electron transfer chain and cell growth. These results demonstrate the positive relationship between HP-ß-CD and phytosterol metabolism and give insight into the complex functions of CDs as mediators of the regulation of sterol metabolism.IMPORTANCE Phytosterols from soybean are low-cost by-products of soybean oil production and, owing to their good bioavailability in mycobacteria, are preferred as the substrates for steroid drug production via biotransformation by Mycobacterium However, the low level of production of steroid hormone drugs due to the low aqueous solubility (below 0.1 mmol/liter) of phytosterols limits the commercial use of sterol-transformed strains. To improve the bioconversion of steroids, cyclodextrins (CDs) are generally used as an effective carrier for the delivery of hydrophobic steroids to the bacterium. CDs improve the biotransformation of steroids due to their effects on steroid solubilization and alterations in cell wall permeability for steroids. However, studies have rarely reported the effects of CDs on cell metabolic pathways related to sterols. In this study, the effects of hydroxypropyl-ß-CD (HP-ß-CD) on the expression of enzymes related to steroid catabolic pathways in Mycobacterium neoaurum were systematically investigated. These findings will improve our understanding of the complex functions of CDs in the regulation of sterol metabolism and guide the application of CDs to sterol production.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/metabolism , Bacterial Proteins/metabolism , Excipients/metabolism , Mycobacteriaceae/metabolism , Phytosterols/metabolism , Proteomics
11.
Materials (Basel) ; 13(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963321

ABSTRACT

Corn straw is an agricultural waste. The system for extracting cellulose from corn straw at a high temperature has been widely reported by researchers. However, the system for extracting cellulose from corn straw at a low temperature has been rarely reported. In this paper, a new system for extracting cellulose from corn straw at a low temperature was reported for the first time. This new system is designated as the low temperature laccase system (LTLS). Cellulose was successfully extracted from corn straw by the LTLS, and the used solution could be recycled. Therefore, the low temperature laccase system is an environmentally-friendly system. The cellulose content in corn straw is 30-40%. The yield of cellulose extracted by LTLS was 33%. The obtained cellulose product was creamy white. The extracted cellulose samples were characterized by using infrared spectroscopy (IR), thermogravimetry (TG), and X-ray diffraction (XRD). The results were consistent with that of standard cellulose. We confirmed that the LTLS extracted cellulose from corn straw with high purity.

12.
Polymers (Basel) ; 11(11)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752139

ABSTRACT

Ethyl cellulose was grafted with ionic liquids in optimal yields (62.5-64.1%) and grafting degrees (5.93-7.90%) by the esterification of the hydroxyl groups in ethyl cellulose with the carboxyl groups in ionic liquids. In IR spectra of the ethyl cellulose derivatives exhibited C=O bond stretching vibration peaks at 1760 or 1740 cm-1, confirming the formation of the ester groups and furnishing the evidence of the successful grafting of ethyl cellulose with ionic liquids. The ethyl cellulose grafted with ionic liquids could be formed into membranes by using the casting solution method. The resulting membranes exhibited good membrane forming ability and mechanical properties. The EC grafted with ionic liquids-based membranes demonstrated PCO2/PCH4 separation factors of up to 18.8, whereas the PCO2/PCH4 separation factor of 9.0 was obtained for pure EC membrane (both for CO2/CH4 mixture gas). The membranes also demonstrated an excellent gas permeability coefficient PCO2, up to 199 Barrer, which was higher than pure EC (PCO2 = 46.8 Barrer). Therefore, it can be concluded that the ionic liquids with imidazole groups are immensely useful for improving the gas separation performances of EC membranes.

13.
Bioresour Technol ; 290: 121750, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31325842

ABSTRACT

Production of androstenedione (AD) and 9α-hydroxyandrostenedione (9α-OH-AD) by recombinant mycobacteria using untreated cane molasses and hydrolysate of mycobacterial cells (HMC) was investigated for the first time. B-vitamins feeding experiment and reverse transcription-PCR analysis showed that propionyl-CoA carboxylase (PCC) plays an important role in the phytosterol biotransformation of mycobacteria. The respective AD and 9α-OH-AD conversion ratios were increased by 2.91 and 1.48 times through coexpression of PCC and NADH dehydrogenase. The highest conversion ratios of AD and 9α-OH-AD obtained by using a co-feeding strategy of cane molasses and HMC reached 96.38% and 95.04%, respectively, and the total costs of carbon and nitrogen sources for the culture medium were reduced by 29.89% and 49.49%, respectively. Taking the results together, untreated cane molasses and HMC can be used for the economical production of steroidal pharmaceutical precursors by mycobacteria. This study offers an economical and green strategy for steroidal pharmaceutical precursor production.


Subject(s)
Molasses , Mycobacterium , Androstenedione , Canes , Nitrogen
14.
Bioresour Technol ; 279: 209-217, 2019 May.
Article in English | MEDLINE | ID: mdl-30735930

ABSTRACT

The bioprocess for producing androstenedione (AD) from phytosterols by using Mycobacterium neoaurum is hindered by nicotinamide adenine dinucleotides (NAD+ and NADH) ratio imbalance, insoluble substrate, and lengthy biotransformation period. This study aims to improve the efficiency of AD production through a combined application of cofactor, solvent, and fermentation engineering technologies. Through the enhanced type II NADH dehydrogenase (NDH-II), the NAD+/NADH ratio and ATP levels increased; the release of reactive oxygen species decreased by 42.32%, and the cell viability improved by 54.17%. In surfactant-waste cooking oil-water media, the conversion of phytosterol increased from 23.92% to 94.98%. Repeated batch culture successfully reduced the biotransformation period from 30 to 17 days, the productivity was 13.75 times more than the parent strain. This study is the first to improve the productivity of AD by enhancing NDH-II and provides a new strategy to increase the accumulation of NAD+-dependent metabolites during biotransformation.


Subject(s)
Androstenedione/biosynthesis , Cooking , Fermentation , Mycobacterium/metabolism , NAD/metabolism , Oils/metabolism , Biotransformation , Phytosterols
15.
J Ind Microbiol Biotechnol ; 45(10): 857-867, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30073539

ABSTRACT

Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are generally produced by the biotransformation of phytosterols in Mycobacterium. The AD (D) production increases when the strain has high NAD+/NADH ratio. To enhance the AD (D) production in Mycobacterium neoaurum TCCC 11978 (MNR M3), a rational strategy was developed through overexpression of a gene involved in the phytosterol degradation pathway; NAD+ was generated as well. Proteomic analysis of MNR cultured with and without phytosterols showed that the steroid C27-monooxygenase (Cyp125-3), which performs sequential oxidations of the sterol side chain at the C27 position and has the oxidative cofactor of NAD+ generated, played an important role in the phytosterol biotransformation process of MNR M3. To improve the productivity of AD (D), the cyp125-3 gene was overexpressed in MNR M3. The specific activity of Cyp125-3 in the recombinant strain MNR M3C3 was improved by 22% than that in MNR M3. The NAD+/NADH ratio in MNR M3C3 was 131% higher than that in the parent strain. During phytosterol biotransformation, the conversion of sterols increased from 84 to 96%, and the yield of AD (D) by MNR M3C3 was increased by approximately 18% for 96 h fermentation. This rational strain modification strategy may also be applied to develop strains with important application values for efficient production of cofactor-dependent metabolites.


Subject(s)
Androstenedione/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Mycobacterium/metabolism , Nontuberculous Mycobacteria/metabolism , Phytosterols/metabolism , Steroid Hydroxylases/metabolism , Androstadienes/chemistry , Androstenediols/chemistry , Biotransformation , Chromatography, Liquid , Industrial Microbiology , Metabolic Networks and Pathways , Oxidation-Reduction , Proteomics , Tandem Mass Spectrometry
16.
Polymers (Basel) ; 10(11)2018 Nov 03.
Article in English | MEDLINE | ID: mdl-30961148

ABSTRACT

The [Rh(L-alaninate)(cod)] (cod = 1,5-Cyclooctadiene) complex was synthesized and characterized. Asymmetric polymerizations of achiral phenylacetylene with two hydroxyl groups and a dodecyl group (DoDHPA) were performed by using the rhodium complex as the catalyst to provide polymers with a higher molecular weight (>105) than the polymers obtained using the [Rh(cod)Cl]2 initiator systems. The resulting polymers showed circular dichroism (CD) signals at approximately 310 and 470 nm, indicating that they have a preferential one-handed helical structure. The helix sense in the polymer main chain was controlled by the sign of the catalyst chirality. These findings suggest that the rhodium complex with a chiral amine is the true active species for the helix-sense-selective polymerization of DoDHPA. The [Rh(L-alaninate)(cod)] complex also exhibits high catalytic activity in the polymerization of phenylacetylene (PA) to give a high yield and molecular weight. All these results demonstrate that this Rh complex is an excellent catalyst for the polymerization of phenylacetylene monomers.

17.
J Am Chem Soc ; 133(29): 11022-5, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21699223

ABSTRACT

We report that two molecular building blocks differ only by two protons, yet they form totally different nanostructures. The protonated one self-organized into hollow nanospheres (~200 nm), whereas the one without the protons self-assembled into rectangular plates. Consequently, the geometrically defined nanoassemblies exhibit radically different properties. As self-assembly directing units, protons impart ion-pairing and hydrogen-bonding probabilities. The plate-forming nanosystem fluoresces weakly, probably due to energy transfer among chromophores (Φ < 0.2), but the nanospheres emit strong yellow fluorescence (Φ ≈ 0.58-0.85).

18.
J Colloid Interface Sci ; 349(1): 142-7, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20573352

ABSTRACT

In this paper, we report that a 1,7-bis-pyridinoyl perylene diimide amphiphile undergoes distinctly different self-assembly in methanol compared to ethanol. This amphiphile forms hollow nanospheres in methanol, whereas in ethanol, it self-assembles into microrose flowers which consist of several soft nanoplates packing like rose petals. Studies of the concentration-dependent absorption spectra confirmed this solvent effect. The most distinct spectral features were the A(0-0)/A(0-1) and A(0-0)/A(S)(0-)(S)(2) values. These spectral changes were explained in terms of the Franck-Condon factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...