Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921406

ABSTRACT

In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs.

2.
Harmful Algae ; 136: 102652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876530

ABSTRACT

Microplastics are well known as contaminants in marine environments. With the development of biofilms, most microplastics will eventually sink and deposit in benthic environment. However, little research has been done on benthic toxic dinoflagellates, and the effects of microplastics on benthic dinoflagellates are unknown. Prorocentrum lima is a cosmopolitan toxic benthic dinoflagellate, which can produce a range of polyether metabolites, such as diarrhetic shellfish poisoning (DSP) toxins. In order to explore the impact of microplastics on marine benthic dinoflagellates, in this paper, we studied the effects of polystyrene (PS) on the growth and toxin production of P. lima. The molecular response of P. lima to microplastic stress was analyzed by transcriptomics. We selected 100 nm, 10 µm and 100 µm PS, and set three concentrations of 1 mg L-1, 10 mg L-1 and 100 mg L-1. The results showed that PS exposure had limited effects on cell growth, but increased the OA and extracellular polysaccharide content at high concentrations. After exposure to PS MPs, genes associated with DSP toxins synthesis, carbohydrate synthesis and energy metabolism, such as glycolysis, TCA cycle and pyruvate metabolism, were significantly up-regulated. We speculated that after exposure to microplastics, P. lima may increase the synthesis of DSP toxins and extracellular polysaccharides, improve the level of energy metabolism and gene expression of ABC transporter, thereby protecting algal cells from damage. Our findings provide new insights into the effects of microplastics on toxic benthic dinoflagellates.


Subject(s)
Dinoflagellida , Microplastics , Polystyrenes , Dinoflagellida/drug effects , Dinoflagellida/genetics , Dinoflagellida/physiology , Microplastics/toxicity , Marine Toxins , Water Pollutants, Chemical/toxicity , Transcriptome/drug effects
3.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928117

ABSTRACT

Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein-DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment.


Subject(s)
Beauveria , Fungal Proteins , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Beauveria/genetics , Beauveria/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Animals , Insecta/microbiology , Spores, Fungal/genetics , Promoter Regions, Genetic
4.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38670931

ABSTRACT

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

5.
J Photochem Photobiol B ; 251: 112849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277960

ABSTRACT

Anti-ultraviolet (UV) roles of Rad2 and Rad14 depend on nucleotide excision repair (NER) of UV-induced DNA lesions in budding yeast but remain unexplored yet in filamentous fungi. Here, nucleus-specific Rad2 and Rad14 orthologs are shown to recover Beauveria bassiana, a main source of wide-spectrum mycoinsecticides, from solar UV damage through photorepair-depending photoreactivation. As a photorepair index, photoreactivation (germination) rates of lethal UVB dose-irradiated conidia via a 3- or 5-h light plus 9- or 7-h dark incubation at 25 °C were drastically reduced in the Δrad2 and Δrad14 mutants versus a wild-type strain. As an NER index, nighttime-mimicking 12-h dark reactivation rates of low UVB dose-impaired conidia decreased sharply compared to the corresponding photoreactivation rates in the presence or absence of either ortholog, indicating that its extant NER activity was limited to recovering light UVB damage in the field. The high photoreactivation activity of either Rad2 or Rad14 was derived from its tight link to a large protein complex formed by photolyase regulators and other anti-UV proteins through multiple protein-protein interactions revealed by yeast two-hybrid assays. Therefore, Rad2 and Rad14 recover B. bassiana from solar UV damage through photoreactiovation in vivo that depends primarily on photorepair, although they contribute little to the fungal lifecycle-related phenotypes. These findings unveil a novel scenario distinguished from the NER-depending anti-UV roles of Rad2 and Rad14 in the model yeast and broaden a biological basis crucial for rational application of fungal insecticides to improve pest control efficacy via feasible recovery of solar UV damage.


Subject(s)
Beauveria , Insecticides , DNA Repair , Beauveria/genetics , Ultraviolet Rays , Sunlight , Saccharomyces cerevisiae/metabolism
6.
Microbiol Res ; 281: 127622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246123

ABSTRACT

The E2 ubiquitin conjugator Rad6 is required for DNA damage bypass in budding yeast but remain functionally unknown in filamentous fungi. Here, we report pleiotropic effect of Rad6 ortholog in Beauveria bassiana, a wide-spectrum fungal insecticide. Global ubiquitination signal was greatly attenuated in the absence of rad6. The blocked ubiquitination led to severe growth defect, blocked asexual development, and abolished infectivity/insect pathogenicity, which correlated with compromised conidial quality (including viability, hydrophobicity, adherence to insect cuticle, and thermotolerance) and blocked secretion of cuticle-degrading enzymes including Pr1 family proteases. Importantly, Rad6 played much greater role in photoreactivation of UVB-impaired conidia by a 3- or 5-h light plus 9- or 7-h dark incubation than in dark reactivation of those impaired conidia by a 12-h dark incubation. The high activity of Rad6 in photoreactivation in vivo was derived from its link to a protein complex cored by the photolyase regulators WC1 and WC2 via the strong interactions of Rad6 with the E3 partner Rad18 and Rad18 with WC2 revealed in yeast two-hybrid assays. Transcriptomic analysis resulted in identification of 2700 differentially regulated genes involved in various function categories and metabolism pathways, indicating a regulatory role of Rad6-mediated ubiquitination in gene expression networks and genomic stability. Conclusively, Rad6 is required for asexual and insect-pathogenic lifecycles, solar UV damage repair, and genomic expression of B. bassiana. The primary dependence of its strong anti-UV role on photoreactivation in vivo unveils a scenario distinct from the core role of its yeast ortholog in DNA damage bypass.


Subject(s)
Beauveria , Animals , Beauveria/genetics , Ubiquitin/genetics , Saccharomyces cerevisiae/genetics , Insecta , Genomics , Spores, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
7.
J Invertebr Pathol ; 201: 108006, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844657

ABSTRACT

Class I/II hydrophobins constitute a family of small amphiphilic proteins that mediate cell hydrophobicity and adhesion to host or substrata and have pleiotropic effects in filamentous fungi. Here we report that only class I Hyd1 is essential for conidial hydrophobicity and insect pathogenicity among three hydrophobins (Hyd1-3) characterized in Metarhizium robertsii, an insect-pathogenic fungus. Aerial conidiation levels of three Δhyd1 mutants were much more reduced in 5-day-old cultures than in 7-day-old cultures, which were wettable (hydrophilic), but restored to a wild-type level in 15-day-old cultures. The Δhyd1 mutants were compromised in conidial quality, including significant decreases in hydrophobicity (58%), adhesion to insect cuticle (36%), insect pathogenicity via normal cuticle infection (37%), UVB resistance (20%), and heat tolerance (10%). In contrast, none of all examined phenotypes were affected in the null mutants of hyd2 and hyd3. Intriguingly, micromorphology and integrity of hydrophobin rodlet bundles on conidial coat were not affected in all mutant and wild-type strains, but the rodlet bundles were disordered in the absence of hyd1, suggesting a link of the disorder to the decreased hydrophobicity. Therefore, Hyd1 mediates the fungal hydrophobicity and plays an important role in conidial quality control and insect-pathogenic lifecycle. Class I Hyd2 and class II Hyd3 seem functionally redundant in M. robertsii.


Subject(s)
Fungal Proteins , Metarhizium , Animals , Spores, Fungal/genetics , Virulence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Insecta , Hydrophobic and Hydrophilic Interactions
8.
J Fungi (Basel) ; 9(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36983459

ABSTRACT

The white collar proteins WC1 and WC2 interact with each other to form a white collar complex acting as a well-known transcription regulator required for the operation of the circadian clock in Neurospora, but their roles in insect-pathogenic fungal lifecycles remain poorly understood. Here, we report that WC1 and WC2 orthologs co-regulate the conidiation capacity and conidial resistance to solar ultraviolet-B (UVB) irradiation in Beauveria bassiana, after their high activities in the photorepair of UVB-induced DNA damages were elucidated previously in the insect mycopathogen, which features non-rhythmic conidiation and high conidiation capacity. The conidial yield, UVB resistance, and photoreactivation rate of UVB-impaired conidia were greatly reduced in the null mutants of wc1 and wc2 compared to their control strains. However, many other lifecycle-related phenotypes, except the antioxidant response, were rarely affected in the two mutants. Transcriptomic analysis revealed largely overlapping roles for WC1 and WC2 in regulating the fungal gene networks. Most of the differentially expressed genes identified from the null mutants of wc1 (1380) and wc2 (1001) were co-downregulated (536) or co-upregulated (256) at similar levels, including several co-downregulated genes required for aerial conidiation and DNA photorepair. These findings expand a molecular basis underlying the fungal adaptation to solar UV irradiation and offer a novel insight into the genome-wide co-regulatory roles of WC1 and WC2 in B. bassiana's asexual development and in vivo photoreactivation against solar UV damage.

9.
Microbiol Spectr ; : e0007023, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916980

ABSTRACT

Conidial maturation, which is crucial for conidial quality, is controlled by the asexual development activator WetA and the downstream, velvety protein VosA in Aspergillus. Their orthologs have proved functional in conidial quality control of Beauveria bassiana, as seen in Aspergillus, but are functionally unexplored, in Metarhizium robertsii, another hypocrealean insect pathogen. Here, WetA and VosA prove essential and nonessential for M. robertsii's life cycle, respectively. Disruption of wetA increased hyphal sensitivity to oxidative stress and Congo red-induced cell wall stress, but had little impact on radial growth. The ΔwetA mutant was severely compromised in conidiation capacity and conidial quality, which was featured by slower germination, decreased UV resistance, reduced hydrophobicity, and deformed hydrophobin rodlet bundles that were assembled onto conidial coat. The mutant's virulence was greatly attenuated via normal infection due to a blockage of infection-required cellular processes. All examined phenotypes were unaffected for the ΔvosA mutant. Intriguingly, mannitol was much less accumulated in the 7- and 15-day-old cultures of ΔwetA and ΔvosA than of control strains, while accumulated trehalose was not detectable at all, revealing little a link of intracellular polyol accumulation to conidial maturation. Transcriptomic analysis revealed differential regulation of 160 genes (up/down ratio: 72:88) in ΔwetA. These genes were mostly involved in cellular component, biological process, and molecular function but rarely associated with asexual development. Conclusively, WetA plays a relatively conserved role in M. robertsii's spore surface structure, and also a differentiated role in some other cellular processes associated with conidial maturation. VosA is functionally redundant in M. robertsii unlike its ortholog in B. bassiana. IMPORTANCE WetA and VosA regulate conidiation and conidial maturation required for the life cycle of Beauveria bassiana, like they do in Aspergillus, but remain functionally unexplored in Metarhizium robertsii, another hypocrealean pathogen considered to have evolved insect pathogenicity ~130 million years later than B. bassiana. This study reveals a similar role of WetA ortholog in asexual development, conidial maturation, and insect pathogenicity, and also its distinctive role in mediating some other conidial maturation-related cellular events, but has functional redundancy of VosA in M. robertsii. The maturation process vital for conidial quality proves dependent on a role of WetA in spore wall assembly but is independent of its role in intracellular polyol accumulation. Transcriptomic analysis reveals a link of WetA to 160 genes involved in cellular component, biological process, and molecular function. Our study unveils that M. robertsii WetA or VosA is functionally differential or different from those learned in B. bassiana and other ascomycetes.

10.
J Fungi (Basel) ; 9(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36836269

ABSTRACT

The Rad4-Rad23-Rad33 complex plays an essential anti-ultraviolet (UV) role depending on nucleotide excision repair (NER) in budding yeast but has been rarely studied in filamentous fungi, which possess two Rad4 paralogs (Rad4A/B) and orthologous Rad23 and rely on the photorepair of UV-induced DNA lesions, a distinct mechanism behind the photoreactivation of UV-impaired cells. Previously, nucleocytoplasmic shuttling Rad23 proved to be highly efficient in the photoreactivation of conidia inactivated by UVB, a major component of solar UV, due to its interaction with Phr2 in Beauveria bassiana, a wide-spectrum insect mycopathogen lacking Rad33. Here, either Rad4A or Rad4B was proven to localize exclusively in the nucleus and interact with Rad23, which was previously shown to interact with the white collar protein WC2 as a regulator of two photorepair-required photolyases (Phr1 and Phr2) in B. bassiana. The Δrad4A mutant lost ~80% of conidial UVB resistance and ~50% of activity in the photoreactivation of UVB-inactivated conidia by 5 h light exposure. Intriguingly, the reactivation rates of UVB-impaired conidia were observable only in the presence of rad4A after dark incubation exceeding 24 h, implicating extant, but infeasible, NER activity for Rad4A in the field where night (dark) time is too short. Aside from its strong anti-UVB role, Rad4A played no other role in B. bassiana's lifecycle while Rad4B proved to be functionally redundant. Our findings uncover that the anti-UVB role of Rad4A depends on the photoreactivation activity ascribed to its interaction with Rad23 linked to WC2 and Phr2 and expands a molecular basis underlying filamentous fungal adaptation to solar UV irradiation on the Earth's surface.

11.
Insects ; 13(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555064

ABSTRACT

Four new species, Charletonia rectangia Xu and Jin sp. nov., Leptus (Leptus) bomiensis Xu and Jin sp. nov., Leptus (Leptus) longisolenidionus Xu and Jin sp. nov., and Leptus (Leptus) striatus Xu and Jin sp. nov. are described and illustrated based on larvae. All four new species are from biodiversity hotspots, L. (L.) bomiensissp. nov. from the Eastern Himalayas biodiversity hotspot, while the other three species from the Indo-Burma biodiversity hotspot.

12.
J Fungi (Basel) ; 8(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36354891

ABSTRACT

Beauveria bassiana serves as a main source of global fungal insecticides, which are based on the active ingredient of formulated conidia vulnerable to solar ultraviolet (UV) irradiation and restrained for all-weather application in green agriculture. The anti-UV proteins Rad1 and Rad10 are required for the nucleotide excision repair (NER) of UV-injured DNA in model yeast, but their anti-UV roles remain rarely exploredin filamentous fungi. Here, Rad1 and Rad10 orthologues that accumulated more in the nuclei than the cytoplasm of B. bassiana proved capable of reactivating UVB-impaired or UVB-inactivated conidia efficiently by 5h light exposure but incapable of doing so by 24 h dark incubation (NER) if the accumulated UVB irradiation was lethal. Each orthologue was found interacting with the other and two white collar proteins (WC1 and WC2), which proved to be regulators of two photolyases (Phr1 and Phr2) and individually more efficient in the photorepair of UVB-induced DNA lesions than either photolyase alone. The fungal photoreactivation activity was more or far more compromised when the protein-protein interactions were abolished in the absence of Rad1 or Rad10 than when either Phr1 or Phr2 lost function. The detected protein-protein interactions suggest direct links of either Rad1 or Rad10 to two photolyase regulators. In B. bassiana, therefore, Rad1 and Rad10 tied to the photolyase regulators have high activities in the photoprotection of formulated conidia from solar UV damage but insufficient NER activities in the field, where night (dark) time is too short, and no other roles in the fungal lifecycle in vitro and in vivo.

13.
Yi Chuan ; 44(8): 695-764, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36384668

ABSTRACT

The regulation of target genes by distal enhancers usually determines the fate and function of cells. Active enhancers in specific regions of chromatin may transcribe bidirectionally to produce long non-coding enhancer RNA (eRNA) to regulate gene expression. We recently found that an antisense enhancer eRNA PEARL (Pcdh eRNA associated with R-loop formation) regulates gene expression of members of the Pcdhα cluster via R-loop formation. To further explore the biological function of eRNA, we performed additional genetic and molecular experiments such as CRISPR (clustered regularly interspaced short palindromic repeats) DNA-fragment editing, RT-PCR, and qPCR. First, we performed expression analyses of the HS5-1 eRNA PEARL and found that it was expressed in a tissue-specific manner. In addition, upon CRISPR DNA-fragment deletion or inversion of the CTCF sites in the HS5-1 enhancer region, the expression of eRNA PEARL was reduced to 2%-10% and the expression of Pcdhα gene cluster was also reduced to 13%-68% of the original levels. Finally, deletion of the bidirectional transcription start site (TSS) of HS5-1 eRNA or inversion of TSS of the eRNA PEARL resulted in approximately 60% or 40% decrease of levels of Pcdhα gene expression. In summary, these data suggested a functional role of the HS5-1 eRNA in gene regulation of the Pcdhα cluster, providing a new direction for future researches on the regulatory mechanisms of clustered Pcdh gene expression in the brain.


Subject(s)
Enhancer Elements, Genetic , RNA, Long Noncoding , Protocadherins , Promoter Regions, Genetic , Gene Expression Regulation , DNA
14.
Ecotoxicol Environ Saf ; 247: 114223, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36306624

ABSTRACT

Gambierdiscus spp. is mainly responsible for the ciguatera fish poisoning (CFP) around the world. The gambiertoxin produced by Gambierdiscus can be passed through the food chain to form ciguatoxins (CTXs) that cause ciguatoxins poisoning. However, the toxic effects of Gambierdiscus on fish through the food chain and related mechanism remains unclear. In this study, the toxicity of Gambierdiscus caribaeus on the marine medaka (Oryzias melastigma) was investigated, where the simulated food chain toxic algae-food organism-fish (G. caribaeus-Artemia metanauplii-O. melastigma) was set. The results showed that direct or indirect exposure through the food chain of G. caribaeus could affect the swimming behaviour of O. melastigma, manifested as decreased swimming performance and spontaneous abnormal swimming behaviours. Histological observation showed that direct or indirect exposure of G. caribaeus caused different degrees of pathological damage to the gills, intestine and liver tissues of O. melastigma. Transcriptome sequencing and RT-qPCR demonstrated that G. caribaeus exposure could trigger a series of physiological and biochemical responses, mainly reflected in energy metabolism, reproductive system, neural activity, immune stress and drug metabolism in marine medaka. Our finding may provide novel insight into the toxicity of Gambierdiscus on fish.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Oryzias , Animals , Ciguatoxins/toxicity , Dinoflagellida/genetics
15.
J Fungi (Basel) ; 8(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36294676

ABSTRACT

BrlA and AbaA are key activators of the central developmental pathway (CDP) that controls asexual development in Aspergillus but their roles remain insufficiently understood in hypocerealean insect pathogens. Here, regulatory roles of BrlA and AbaA orthologs in Metarhizium robertsii (Clavicipitaceae) were characterized for comparison to those elucidated previously in Beauveria bassiana (Cordycipitaceae) at phenotypic and transcriptomic levels. Time-course transcription profiles of brlA, abaA, and the other CDP activator gene wetA revealed that they were not so sequentially activated in M. robertsii as learned in Aspergillus. Aerial conidiation essential for fungal infection and dispersal, submerged blastospore production mimicking yeast-like budding proliferation in insect hemocoel, and insect pathogenicity via cuticular penetration were all abolished as a consequence of brlA or abaA disruption, which had little impact on normal hyphal growth. The disruptants were severely compromised in virulence via cuticle-bypassing infection (intrahemocoel injection) and differentially impaired in cellular tolerance to oxidative and cell wall-perturbing stresses. The ΔbrlA and ΔabaA mutant shad 255 and 233 dysregulated genes (up/down ratios: 52:203 and 101:122) respectively, including 108 genes co-dysregulated. These counts were small compared with 1513 and 2869 dysregulated genes (up/down ratios: 707:806 and 1513:1356) identified in ΔbrlA and ΔabaA mutants of B. bassiana. Results revealed not only conserved roles for BrlA and AbaA in asexual developmental control but also their indispensable roles in fungal adaptation to the insect-pathogenic lifecycle and host habitats. Intriguingly, BrlA- or AbaA-controlled gene expression networks are largely different between the two insect pathogens, in which similar phenotypes were compromised in the absence of either brlA or abaA.

16.
Insects ; 13(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36005331

ABSTRACT

The species Eatoniana yangshuonicus (Haitlinger) comb. nov. is transferred from the genus Erythraeus to Eatoniana based on the basifemoral setal formula 2-2-1. Two new species, Eatoniana nanlingensis Xu and Jin sp. nov. and Erythraeus (Erythraeus) kunyuensis Xu and Jin sp. nov. are described and illustrated based on larvae. Eatoniana nanlingensis sp. nov. from the Oriental region (Guangdong Province), Er. (Er.) kunyuensis sp. nov. from the Palaearctic region (Shandong Province). An updated key to larval species of the genus Eatoniana of the world is presented.

17.
Pest Manag Sci ; 78(11): 4660-4667, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35864789

ABSTRACT

BACKGROUND: Solar ultraviolet (UV) irradiation is harmful to formulated conidia as active ingredients of fungal pesticides and hence restrains their field application in sunny days of summer, a season requiring frequent pest controls. This conflict makes it necessary to explore optimal strategies for the application of fungal pesticides to suppress pest populations but avoid solar UV damage during summer. RESULTS: The conidia of Beauveria bassiana, a wide-spectrum fungal pesticide, were tolerable to UVB (major solar UV wavelengths) damage of ≤0.5 J cm-2 . The damage of this upper limit caused a loss of conidial viability and infectivity if not photoreactivated by light exposure after irradiation. Intriguingly, the light exposure resulted in a high photoreactivation rate of UVB-inactivated conidia and an insignificant or marginal difference in insecticidal activity between normal conidia and those photoreactivated. Modeling analysis of solar UVB intensity recorded hourly over the daylight of five sunny summer days from 5:00 am to 7:00 pm at 30° 17'57'' N and 120°5'7'' E revealed a variation of daily accumulated UVB dose from 2.07 to 2.78 J cm-2 , which was far beyond the upper limit. A more tolerable dose of ~0.2 J cm-2 appeared between 3:00 pm and 5:00 pm, and no harmful dose accumulated between 5:00 pm and 7:00 pm. CONCLUSION: Fungal UVB tolerance, fungal photoreactivation capability and the daily accumulation pattern of solar UV irradiation are based to propose an optional strategy for low-risk or non-risk application of fungal pesticides after 3:00 or 5:00 pm during summer. © 2022 Society of Chemical Industry.


Subject(s)
Beauveria , Pesticides , Beauveria/physiology , Spores, Fungal/radiation effects , Sunlight , Ultraviolet Rays
18.
Environ Microbiol Rep ; 14(5): 719-731, 2022 10.
Article in English | MEDLINE | ID: mdl-35851566

ABSTRACT

The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.


Subject(s)
Beauveria , Fungal Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Antioxidants , Chitin , Congo Red , Epitopes , Fungal Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Spores, Fungal/genetics
19.
J Fungi (Basel) ; 8(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35736089

ABSTRACT

Unique CFP (cysteine-free protein; 120 aa) has been identified as an extraordinary virulence factor in Beauveria bassiana (Cordycipitaceae), a main source of wide-spectrum fungal insecticides. Its homologs exclusively exist in wide-spectrum insect pathogens of Hypocreales, suggesting their importance for a fungal insect-pathogenic lifestyle. In this study, all three CFP homologs (CFP1-3, 128-145 aa) were proven essential virulence factors in Metarhizium robertsii (Clavicipitaceae). Despite limited effects on asexual cycles in vitro, knockout mutants of cfp1,cfp2 and cfp3 were severely compromised in their capability for normal cuticle infection, in which most tested Galleria mellonella larvae survived. The blocked cuticle infection concurred with reduced secretion of extracellular enzymes, including Pr1 proteases required cuticle penetration. Cuticle-bypassing infection by intrahemocoel injection of ~250 conidia per larva resulted in a greater reduction in virulence in the mutant of cfp1 (82%) than of cfp2 (21%) or cfp3 (25%) versus the parental wild-type. Transcriptomic analysis revealed dysregulation of 604 genes (up/down ratio: 251:353) in the Δcfp1 mutant. Many of them were involved in virulence-related cellular processes and events aside from 154 functionally unknown genes (up/down ratio: 56:98). These results reinforce the essential roles of small CFP homologs in hypocrealean fungal adaptation to insect-pathogenic lifestyle and their exploitability for the genetic improvement of fungal insecticidal activity.

20.
Zookeys ; 1116: 33-55, 2022.
Article in English | MEDLINE | ID: mdl-36760987

ABSTRACT

In this study, fifteen species of Gallerucida Motschulsky, 1860 (Coleoptera: Chrysomelidae: Galerucinae), with spotted elytra, from China are reviewed, including one new record: G.balyi (Duvivier, 1885), six new species: G.fortispina Xu & Yang, sp. nov., G.levifasciata Xu & Nie, sp. nov., G.nigrovittata Xu & Yang, sp. nov., G.octodecimpunctata Xu & Yang, sp. nov., G.piceusfasciata Xu & Yang, sp. nov., G.rufipectoralis Xu & Nie, sp. nov., and Aplosonyxgansuica (Chen, 1942), comb. nov. is removed from genus Gallerucida. A key to the spotted-elytron species of Gallerucida from China is given as well as habitus photographs of the related species and Aplosonyxgansuica comb. nov. and photographs of the aedeagus of each new species.

SELECTION OF CITATIONS
SEARCH DETAIL
...