Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Med Chem ; 66(11): 7534-7552, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37235865

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3ß in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , tau Proteins/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Transgenic , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Phosphorylation
2.
ACS Med Chem Lett ; 12(11): 1753-1758, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795864

ABSTRACT

BMS-813160 (compound 3) was identified as a potent and selective CCR2/5 dual antagonist. Compound 3 displayed good permeability at pH = 7.4 in PAMPA experiments and demonstrated excellent human liver microsome stability. Pharmacokinetic studies established that 3 had excellent oral bioavailability and exhibited low clearance in dog and cyno. Compound 3 was also studied in the mouse thioglycollate-induced peritonitis model, which confirmed its ability to inhibit the migration of inflammatory monocytes and macrophages. As a result of this profile, compound 3 was selected as a clinical candidate.

3.
ACS Med Chem Lett ; 12(6): 969-975, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141082

ABSTRACT

To improve the metabolic stability profile of BMS-741672 (1a), we undertook a structure-activity relationship study in our trisubstituted cyclohexylamine series. This ultimately led to the identification of 2d (BMS-753426) as a potent and orally bioavailable antagonist of CCR2. Compared to previous clinical candidate 1a, the tert-butyl amine 2d showed significant improvements in pharmacokinetic properties, with lower clearance and higher oral bioavailability. Furthermore, compound 2d exhibited improved affinity for CCR5 and good activity in models of both monocyte migration and multiple sclerosis in the hCCR2 knock-in mouse. The synthesis of 2d was facilitated by the development of a simplified approach to key intermediate (4R)-9b that deployed a stereoselective reductive amination which may prove to be of general interest.

4.
Bioorg Med Chem Lett ; 30(21): 127495, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32798651

ABSTRACT

Structure-activity relationship optimization on a series of phenylpyrazole amides led to the identification of a dual ROCK1 and ROCK2 inhibitor (25) which demonstrated good potency, kinome selectivity and favorable pharmacokinetic profiles. Compound 25 was selected as a tool molecule for in vivo studies including evaluating hemodynamic effects in telemeterized mice, from which moderate decreases in blood pressure were observed.


Subject(s)
Amides/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Animals , Blood Pressure/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , rho-Associated Kinases/metabolism
5.
Bioorg Med Chem Lett ; 30(21): 127474, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32805407

ABSTRACT

A novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC50 of 0.67 nM and 0.18 nM respectively.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Structure-Activity Relationship , rho-Associated Kinases/metabolism
6.
ACS Med Chem Lett ; 10(3): 300-305, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891130

ABSTRACT

We encountered a dilemma in the course of studying a series of antagonists of the G-protein coupled receptor CC chemokine receptor-2 (CCR2): compounds with polar C3 side chains exhibited good ion channel selectivity but poor oral bioavailability, whereas compounds with lipophilic C3 side chains exhibited good oral bioavailability in preclinical species but poor ion channel selectivity. Attempts to solve this through the direct modulation of physicochemical properties failed. However, the installation of a protonation-dependent conformational switching mechanism resolved the problem because it enabled a highly selective and relatively polar molecule to access a small population of a conformer with lower polar surface area and higher membrane permeability. Optimization of the overall properties in this series yielded the CCR2 antagonist BMS-741672 (7), which embodied properties suitable for study in human clinical trials.

7.
J Biomed Mater Res B Appl Biomater ; 107(5): 1452-1461, 2019 07.
Article in English | MEDLINE | ID: mdl-30339743

ABSTRACT

The keratin-based scaffolds are getting more and more attention in the application of tissue engineering. Though various approaches have been considered to improve the physical properties of these scaffolds, few succeeded in achieving the enhanced properties of the pure keratin scaffolds. Due to the presence of -OH, -NH2 , >CO, and -SH on the extracted human hair keratin (HHK), the formation of hydrogen bonds and disulfide bridges could be triggered under certain conditions, leading to the self-cross-linking of HHK materials. Herein, a simple and green strategy was introduced, via freeze-thaw cycles of keratin solutions without addition of extraneous reagents, to obtain the mechanically robust HHK scaffolds. The comparative quantitation of residual -SH among the samples treated with 1, 5, and 9 cycles confirmed the oxidation in the thaw process for forming disulfide bonds. So, the equivalent thaw time was applied in this study, and three groups of the treated samples after 1, 5, and 9 cycles with an appropriate extension thaw time were prepared to solely investigate the effects of physical cross-linking networks, primarily by formation of hydrogen bonds, on the properties of the obtained scaffolds. The systematic assessments including swelling behavior, porosity, thermal analysis, compressive measurement, and microstructural observation confirmed that the repetitive freeze-thaw treatment contributed to mechanically robust scaffolds with good porous interconnectivity. The cell culturing experiments further verified that these HHK scaffolds had desirable cytocompatibility, permitting the proper proliferation, attachment, and infiltration. Accordingly, this study provided a simple and efficient method to obtain biocompatible, mechanically robust keratin scaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1452-1461, 2019.


Subject(s)
Biocompatible Materials/chemistry , Freezing , Keratins, Hair-Specific/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Humans , Mice , NIH 3T3 Cells
8.
Bioorg Med Chem Lett ; 28(18): 3080-3084, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30097367

ABSTRACT

Incorporation of a suitably-placed electrophilic group transformed a series of reversible BTK inhibitors based on carbazole-1-carboxamide and tetrahydrocarbazole-1-carboxamide into potent, irreversible inhibitors. Removal of one ring from the core of these compounds provided a potent irreversible series of 2,3-dimethylindole-7-carboxamides having excellent potency and improved selectivity, with the additional advantages of reduced lipophilicity and molecular weight.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Carbazoles/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Carbazoles/chemical synthesis , Carbazoles/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
9.
Science ; 359(6380): 1151-1156, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29590046

ABSTRACT

The gut microbiota benefits humans via short-chain fatty acid (SCFA) production from carbohydrate fermentation, and deficiency in SCFA production is associated with type 2 diabetes mellitus (T2DM). We conducted a randomized clinical study of specifically designed isoenergetic diets, together with fecal shotgun metagenomics, to show that a select group of SCFA-producing strains was promoted by dietary fibers and that most other potential producers were either diminished or unchanged in patients with T2DM. When the fiber-promoted SCFA producers were present in greater diversity and abundance, participants had better improvement in hemoglobin A1c levels, partly via increased glucagon-like peptide-1 production. Promotion of these positive responders diminished producers of metabolically detrimental compounds such as indole and hydrogen sulfide. Targeted restoration of these SCFA producers may present a novel ecological approach for managing T2DM.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , China , Diet , Feces , Female , Fermentation , Glucagon-Like Peptide 1/metabolism , Glycated Hemoglobin/analysis , Humans , Hydrogen Sulfide/metabolism , Indoles/metabolism , Male , Metagenomics , Middle Aged
10.
Int J Endocrinol ; 2017: 5262560, 2017.
Article in English | MEDLINE | ID: mdl-28458689

ABSTRACT

The mechanisms facilitating hypertension in diabetes still remain to be elucidated. Nonalcoholic fatty liver disease (NAFLD), which is a higher risk factor for insulin resistance, shares many predisposing factors with diabetes. However, little work has been performed on the pathogenesis of hypertension in type 2 diabetes (T2DM) with NAFLD. The aim of this study is to investigate the prevalence of hypertension in different glycemic statuses and to analyze relationships between NAFLD, metabolic risks, and hypertension within a large community-based population after informed written consent. A total of 9473 subjects aged over 45 years, including 1648 patients with T2DM, were enrolled in this cross-sectional study. Clinical and biochemical parameters of all participants were determined. The results suggested that the patients with prediabetes or T2DM were with higher risks to have hypertension. T2DM with NAFLD had significantly higher levels of blood pressure, triglyceride, uric acid, and HOMA-IR than those without NAFLD. Data analyses suggested that hypertriglyceridemia [OR = 1.773 (1.396, 2.251)], NAFLD [OR = 2.344 (1.736, 3.165)], hyperuricemia [OR = 1.474 (1.079, 2.012)], and insulin resistance [OR = 1.948 (1.540, 2.465)] were associated with the higher prevalence of hypertension independent of other metabolic risk factors in type 2 diabetes. Further studies are needed to focus on these associations.

11.
ACS Med Chem Lett ; 6(4): 439-44, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25893046

ABSTRACT

We describe the hybridization of our previously reported acyclic and cyclic CC chemokine receptor 2 (CCR2) antagonists to lead to a new series of dual antagonists of CCR2 and CCR5. Installation of a γ-lactam as the spacer group and a quinazoline as a benzamide mimetic improved oral bioavailability markedly. These efforts led to the identification of 13d, a potent and orally bioavailable dual antagonist suitable for use in both murine and monkey models of inflammation.

12.
Mater Sci Eng C Mater Biol Appl ; 33(2): 648-55, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-25427469

ABSTRACT

The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120-220 µm and the porosity >90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration.


Subject(s)
Biocompatible Materials/chemistry , Keratins, Hair-Specific/chemistry , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Animals , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Hair/chemistry , Humans , Keratins, Hair-Specific/isolation & purification , Keratins, Hair-Specific/pharmacology , Mice , NIH 3T3 Cells , Rats , Rats, Wistar , Skin, Artificial
13.
Mol Cancer Ther ; 2(5): 479-88, 2003 May.
Article in English | MEDLINE | ID: mdl-12748310

ABSTRACT

We reported previously a significant increase in survival of nude rats harboring orthotopic A549 human non-small cell lung cancer tumors after treatment with a combination of exisulind (Sulindac Sulfone) and docetaxel (D. C. Chan, Clin. Cancer Res., 8: 904-912, 2002). The purpose of the current study was to determine the biochemical mechanisms responsible for the increased survival by an analysis of the effects of both drugs on A549 orthotopic lung tumors and A549 cells in culture. Orthotopic A549 rat lung tissue sections from drug-treated rats and A549 cell culture responses to exisulind and docetaxel were compared using multiple apoptosis and proliferation analyses [i.e., terminal deoxynucleotidyl transferase-mediated nick end labeling, active caspase 3, the caspase cleavage products cytokeratin 18 and p85 poly(ADP-ribose) polymerase, and Ki-67]. Immunohistochemistry was used to determine cyclic GMP (cGMP) phosphodiesterase (PDE) expression in tumors. The cGMP PDE composition of cultured A549 cells was resolved by DEAE-Trisacryl M chromatography and the pharmacological sensitivity to exisulind, and additional known PDE inhibitors were determined by enzyme activity assays. Exisulind inhibited A549 cell cGMP hydrolysis and induced apoptosis of A549 cells grown in culture. PDE5 and 1 cGMP PDE gene family isoforms identified in cultured cells were highly expressed in orthotopic tumors. The in vivo apoptosis rates within the orthotopic tumors increased 7-8-fold in animals treated with the combination of exisulind and docetaxel. Exisulind increased the in vivo apoptosis rates as a single agent. Docetaxel, but not exisulind, decreased proliferative rates within the tumors. The data indicate that exisulind-induced apoptosis contributed significantly to the increased survival in rats treated with exisulind/docetaxel. The mechanism of exisulind-induced apoptosis involves inhibition of cGMP PDEs, and these results are consistent with a cGMP-regulated apoptosis pathway.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Sulindac/analogs & derivatives , 3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Caspase 3 , Caspases/metabolism , Cell Division/drug effects , Docetaxel , Female , Humans , In Situ Nick-End Labeling , Keratins/metabolism , Ki-67 Antigen/metabolism , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Poly(ADP-ribose) Polymerases/metabolism , Rats , Rats, Nude , Sulindac/administration & dosage , Survival Rate , Taxoids/administration & dosage , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...