Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37447692

ABSTRACT

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. The energy flow is divided into four processing steps: (i) how to capture mechanical energy into a deformed footwear, (ii) how to transfer the elastic energy from a deformed shoes into piezoelectric material, (iii) how to convert elastic deformation energy of piezoelectric materials to electrical energy in the piezoelectric structure, and (iv) how to deliver the generated electric energy in piezoelectric structure to external resistive loads or electrical circuits. Moreover, the major PFEH structures and working mechanisms on how the PFEHs capture mechanical energy and convert to electrical energy from human walking are summarized. Those piezoelectric structures for capturing mechanical energy from human walking are also reviewed and classified into four categories: flat plate, curved, cantilever, and flextensional structures. The fundamentals of piezoelectric energy harvesters, the configurations and mechanisms of the PFEHs, as well as the generated power, etc., are discussed and compared. The advantages and disadvantages of typical PFEHs are addressed. The power outputs of PFEHs vary in ranging from nanowatts to tens of milliwatts. Finally, applications and future perspectives are summarized and discussed.


Subject(s)
Acceleration , Pentaerythritol Tetranitrate , Humans , Physical Phenomena , Bone Plates , Electricity
2.
Article in English | MEDLINE | ID: mdl-12243582

ABSTRACT

Taking advantage of the high electrostrictive strain and high elastic energy density of a newly developed electrostrictive polymer, modified poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] based polymers, a flex-tensional transducer was designed, and its performance was investigated. The flextensional transducer consists of a multilayer stack made of electrostrictive P(VDF-TrFE) polymer films and two flextensional shells fixed at the ends to the multilayer stack. Because of the large transverse strain level achievable in the electrostrictive polymer and the displacement amplification of the flextensional shells, a device of a few millimeters thick and lateral dimension about 30 mm x 25 mm can generate an axial displacement output of more than 1 mm. The unique flextensional configuration and the high elastic energy density of the active polymer also enable the device to offer high-load capability. As an underwater transducer, the device can be operated at frequencies below 1 kHz and still exhibit relatively high transmitting voltage response (TVR), very high source level (SL), and low mechanical quality factor (Qm).

SELECTION OF CITATIONS
SEARCH DETAIL
...