Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930932

ABSTRACT

Fe/Cu bimetallic catalysts have a synergistic effect that can effectively enhance catalytic activity, so Fe/Cu bimetallic catalysts have been extensively studied. However, the efficacy and mechanisms of Fe/Cu bimetallic catalysts' peroxidation activation have rarely been explored. In this study, Fe/Cu bimetallic materials were fabricated to catalyze different oxidizing agents, including peroxymonosulfate (PMS), peroxydisulfate (PDS), peroxyacetic acid (PAA), and hydrogen peroxide (H2O2), for the degradation of sulfamethoxazole (SMX). The Fe/Cu/oxidant systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). In the Fe/Cu/PMS, Fe/Cu/PDS, and Fe/Cu/PAA systems, the main reactive oxygen species (ROS) responsible for SMX degradation were hydroxyl radical (•OH) and singlet oxygen (1O2), while the main ROS was only •OH in the H2O2 system. The differences in the surface structure of the materials before and after oxidation were examined, revealing the presence of a large amount of flocculent material on the surface of the oxidized PMS material. Anion experiments and actual body experiments also revealed that the PMS system had a strong anti-interference ability. Finally, a comprehensive comparison concluded that the PMS system was the optimal system among the four oxidation systems. Overall, this work revealed that the PMS oxidant has a better catalytic degradation of SMX compared to other oxidizers for Fe/Cu, that PMS generates more ROS, and that the PMS system has a stronger resistance to interference.

2.
Micromachines (Basel) ; 10(2)2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30744194

ABSTRACT

In previous studies, the semi-strapdown inertial navigation system (SSINS), based on microelectromechanical system (MEMS) sensors, had realized cross-range measurement of attitude information of high-spinning projectiles through construction of a "spin reduction" platform of the roll axis. However, further improvement of its measurement accuracy has been difficult, due to the inertial sensor error. In order to enhance the navigational accuracy, a periodically rotating method is utilized to compensate for sensor error, which is called rotation modulation. At present, the rotation scheme, as one of the core technologies, has been studied by a lot of researchers. It is known that the modulation angular rate is the main factor affecting the effectiveness of error modulation. Different from the long-endurance and low-dynamic motion characteristics of ships, however, the short-endurance and high-dynamic characteristics of the high-spinning projectile not only require the modulation angular rate to be as fast as possible but, also, the influence of the rotation speed error caused by rotating mechanism errors cannot be ignored. Combined with the rotation speed error of the rotating mechanism, this paper explored the relationship between modulation angular rate, device error, and the navigation error, and then proposed a design method for optimal modulation angular rate. Experiments were carried out to validate the performance of the method. In addition, the proposed method is applicable for rotation modulation systems with different types of motors as the rotating mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...