Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 10(1): 14, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36808378

ABSTRACT

BACKGROUND: Highly sensitive digital total-body PET/CT scanners (uEXPLORER) have great potential for clinical applications and fundamental research. Given their increasing sensitivity, low-dose scanning or snapshot imaging is now possible in clinics. However, a standardized total-body 18F-FDG PET/CT protocol is still lacking. Establishing a standard clinical protocol for total-body 18F-FDG PET/CT examination under different activity administration plans can help provide a theoretical reference for nuclear radiologists. METHODS: The NEMA image quality (IQ) phantom was used to evaluate the biases of various total-body 18F-FDG PET/CT protocols related to the administered activity, scan duration, and iterations. Several objective metrics, including contrast recovery (CR), background variability (BV), and contrast-to-noise ratio (CNR), were measured from different protocols. In line with the European Association of Nuclear Medicine Research Ltd. (EARL) guidelines, optimized protocols were suggested and evaluated for total-body 18F-FDG PET/CT imaging for three different injected activities. RESULTS: Our NEMA IQ phantom evaluation resulted in total-body PET/CT images with excellent contrast and low noise, suggesting great potential for reducing administered activity or shortening the scan duration. Different to the iteration number, prolonging the scan duration was the first choice for achieving higher image quality regardless of the activity administered. In light of image quality, tolerance of oncological patients, and the risk of ionizing radiation damage, the 3-min acquisition and 2-iteration (CNR = 7.54), 10-min acquisition and 3-iteration (CNR = 7.01), and 10-min acquisition and 2-iteration (CNR = 5.49) protocols were recommended for full-dose (3.70 MBq/kg), half-dose (1.95 MBq/kg), and quarter-dose (0.98 MBq/kg) activity injection schemes, respectively. Those protocols were applied in clinical practices, and no significant differences were observed for the SUVmax of large/small lesions or the SUVmean of different healthy organs/tissues. CONCLUSION: These findings support that digital total-body PET/CT scanners can generate PET images with a high CNR and low-noise background, even with a short acquisition time and low administered activity. The proposed protocols for different administered activities were determined to be valid for clinical examination and can maximize the value of this imaging type.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120936, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35121470

ABSTRACT

The feasibility of identifying geographical origin and storage age of tangerine peel was explored by using a handheld near-infrared (NIR) spectrometer combined with machine learning. A handheld NIR spectrometer (900-1700 nm) was used to scan the outer surface of tangerine peel and collect the corresponding NIR diffuse reflectance spectra. Principal component analysis (PCA) combined with Mahalanobis distance were used to detect outliers. The accuracies of all models in the anomaly set were much lower than that in calibration set and test set, indicating that the outliers were effectively identified. After removing the outliers, in order to initially explore the clustering characteristics of tangerine peels, PCA was performed on tangerine peels from different origins and the same origin with different storage ages. The results showed that the tangerine peels from the same origin or the same storage age had the potential to cluster, indicating that the spectral data of the same origin or the same storage age had a certain similarity, which laid the foundation for subsequent modeling and identification. However, there were quite a few samples with different origins or different storage ages overlapped and could not be distinguished from each other. In order to achieve qualitative identification of origin and storage age, Savitzky-Golay convolution smoothing with first derivative (SGFD) and standard normal variate (SNV) were used to preprocess the raw spectra. Random forest (RF), K-nearest neighbor (KNN) and linear discriminant analysis (LDA) were used to establish the discriminant model. The results showed that SGFD-LDA could accurately distinguish the origin and storage age of tangerine peel at the same time. The origin identification accuracy was 96.99%. The storage age identification accuracy was 100% for Guangdong tangerine peel and 97.15% for Sichuan tangerine peel. This indicated that the near-infrared spectroscopy (NIRS) combine with machine learning can simultaneously and rapidly identify the origin and storage age of tangerine peel on site.


Subject(s)
Spectroscopy, Near-Infrared , Calibration , Discriminant Analysis , Geography , Principal Component Analysis , Spectroscopy, Near-Infrared/methods
3.
Front Oncol ; 11: 802676, 2021.
Article in English | MEDLINE | ID: mdl-35071007

ABSTRACT

BACKGROUND: Fibroblast activating protein (FAP) has become an important target for cancer diagnostic imaging and targeted radiotherapy. In particular, [18F]FAPI-42 has been successfully applied to positron emission tomography (PET) imaging of various tumors. However, it exhibits high hepatobiliary metabolism and is thus not conducive to abdominal tumor imaging. This study reports a novel 18F-labeled FAP inhibitor, [18F]AlF-FAPT, a better FAPI imaging agent than [18F]FAPI-42. MATERIALS AND METHODS: The precursor of [18F]AlF-FAPT (NOTA-FAPT) was designed and synthesized using the standard FMOC solid phase synthesis method. [18F]AlF-FAPT was subsequently synthesized and radiolabeled with 18F using the AllInOne synthesis module. Dynamic MicroPET and biodistribution studies of [18F]AlF-FAPT were then conducted in xenograft tumor mouse models to determine its suitability. RESULTS: The precursors NOTA-FAPT were obtained with a chemical purity of > 95%. [18F]AlF-FAPT was synthesized automatically using the cassette-based module AllInOne within 40 min. The non-decay corrected radiochemical yield was 25.0 ± 5.3% (n=3). In vivo imaging and biodistribution studies further demonstrated that compared with [18F]-FAPI-42, [18F]AlF-FAPT had a lower hepatobiliary uptake than [18F]FAPI-42, which was advantageous for imaging abdominal tumors. CONCLUSION: [18F]AlF-FAPT can be synthesized automatically using a one-step method of aluminum fluoride. Collectively, [18F]AlF-FAPT is a better FAPI imaging agent than [18F]FAPI-42. This study proves the feasibility of using [18F]AlF-FAPT as a new radioactive tracer for PET imaging.

4.
J Pharm Anal ; 2(6): 458-461, 2012 Dec.
Article in English | MEDLINE | ID: mdl-29403783

ABSTRACT

Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3) was 2.0×10-9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8-102.5%. The proposed method is simple, cheap and highly efficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...