Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Mediators Inflamm ; 2024: 7524314, 2024.
Article in English | MEDLINE | ID: mdl-38725539

ABSTRACT

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Subject(s)
Cell Differentiation , Cyclic AMP Response Element-Binding Protein , Cyclic Nucleotide Phosphodiesterases, Type 4 , RANK Ligand , Sorbitol , Sorbitol/pharmacology , RANK Ligand/metabolism , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cell Differentiation/drug effects , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Intestinal Mucosa/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Mice, Inbred C57BL , M Cells
2.
Turk J Gastroenterol ; 35(1): 41-47, 2024 01.
Article in English | MEDLINE | ID: mdl-38454276

ABSTRACT

BACKGROUND/AIMS: The aim of this study was to explore the risk factors for the incidence of gastroscopy-assisted capsule endoscopy and the small bowel transit time in pediatric patients who underwent capsule endoscopy examination. MATERIALS AND METHODS: A retrospective analysis was performed to analyze the clinical data collected from pediatric patients who underwent capsule endoscopy examination. RESULTS: A total of 239 pediatric patients were enrolled in this study. About 196 (82.0%) patients completed the entire small bowel capsule endoscopy examination, while 3 (1.3%) patients were subjected to capsule retention. Only age, not gender, height, body weight, body mass index, chief complaint, and intestinal preparation medications, has been identified as a risk factor for the incidence of gastroscopy-assisted capsule endoscopy (P < .05) by multivariate logistic regression. Further analysis showed that the small bowel transit time in the self-swallowed group was shorter than that in the gastroscopy-assisted group, while no significant difference was obtained in other factors, including intestinal preparation medications, metoclopramide, and lesions in the small intestine, which did not significantly affect small bowel transit time compared with the corresponding control group (P > .05). CONCLUSION: A comprehensive assessment is required before performing capsule endoscopy, because age has been identified as a critical risk factor for the incidence of gastroscopy-assisted capsule endoscopy in pediatric patients.


Subject(s)
Capsule Endoscopy , Humans , Child , Retrospective Studies , Gastroscopy , Intestine, Small/pathology , Risk Factors
4.
Life Sci ; 337: 122348, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38103725

ABSTRACT

Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.


Subject(s)
Norovirus , Protein Kinase D2 , Animals , Humans , Aquaporin 3/genetics , Aquaporin 3/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Norovirus/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Epithelial Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Diarrhea
5.
Sensors (Basel) ; 23(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139720

ABSTRACT

An Mw 6.8 earthquake occurred in Luding County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, on 5 September 2022. This seismic event triggered numerous coseismic geohazards in the seismic zone. In this study, the ascending- and descending-track synthetic aperture radar (SAR) images observed by the Sentinel-1A satellite are utilized to extract the coseismic surface deformation of the Luding earthquake. Subsequently, a faulting model is estimated based on the elastic dislocation theory, under the constraint of the InSAR observation. Additionally, the POT technique was employed to detect coseismic geohazards. High-spatial-resolution optical remote sensing images served to validate the reliability of the detection results. The coseismic interferometric synthetic aperture radar (InSAR) deformation field indicated a maximum deformation of ~190 mm and ~140 mm along the ascending and descending tracks, respectively. The estimated best-fitting faulting model suggests that the optimal seismogenic fault strike and dip angles are 169.3° and 70°, respectively. The fault slip predominantly exhibits left-lateral strike-slip characteristics and is concentrated at depths of 3-12 km. The estimated maximum fault slip was 2.67 m, occurring at a depth of 7 km. The pixel offset tracking (POT) result derived from the pre- and post-earthquake SAR images found a total of 245 medium- to large-scale coseismic geohazards, with a verification rate from optical images exceeding 64%. The distribution of these geohazards is notably dense within the significant fault rupture segment. Geohazards on the fault hanging wall are densely packed, whereas landslides along the Dadu River's fault footwall are also notably frequent.

6.
Turk J Gastroenterol ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966265

ABSTRACT

BACKGROUND/AIMS: The aim of this study was to explore the risk factors for the incidence of gastroscopy-assisted capsule endoscopy and the small bowel transit time in pediatric patients who underwent capsule endoscopy examination. MATERIALS AND METHODS: A retrospective analysis was performed to analyze the clinical data collected from pediatric patients who underwent capsule endoscopy examination. RESULTS: A total of 239 pediatric patients were enrolled in this study. About 196 (82.0%) patients completed the entire small bowel capsule endoscopy examination, while 3 (1.3%) patients were subjected to capsule retention. Only age, not gender, height, body weight, body mass index, chief complaint, and intestinal preparation medications, has been identified as a risk factor for the incidence of gastroscopy-assisted capsule endoscopy (P < .05) by multivariate logistic regression. Further analysis showed that the small bowel transit time in the self-swallowed group was shorter than that in the gastroscopy-assisted group, while no significant difference was obtained in other factors, including intestinal preparation medications, metoclopramide, and lesions in the small intestine, which did not significantly affect small bowel transit time compared with the corresponding control group (P > .05). CONCLUSION: A comprehensive assessment is required before performing capsule endoscopy, because age has been identified as a critical risk factor for the incidence of gastroscopy-assisted capsule endoscopy in pediatric patients.

7.
Mediators Inflamm ; 2023: 6623329, 2023.
Article in English | MEDLINE | ID: mdl-37501933

ABSTRACT

Objective: Vitronectin (VTN) has been reported to trigger cell pyroptosis to aggravate inflammation in our previous study. However, the function of VTN in inflammatory bowel disease (IBD) remains to be addressed. Methods: Real-time PCR and western blotting were performed to analyze VTN-regulated intestinal epithelial cell (IEC) differentiation through ferroptosis, and immunofluorescence (IF), luciferase, and chromatin immunoprecipitation were used to identify whether VTN-modulated ferroptosis is dependent on phosphodiesterase 4 (PDE4)/protein kinase A (PKA)/cyclic adenosine monophosphate-response element-binding protein (CREB) cascade pathway. In vivo experiment in mice and a pilot study in patients with IBD were used to confirm inhibition of PDE4-alleviated IECs ferroptosis, leading to cell differentiation during mucosal healing. Results: Herein, we found that caudal-related homeobox transcription factor 2-mediated IECs differentiation was impaired in response to VTN, which was attributed to enhanced ferroptosis characterized by decreased glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 expression. Inhibition of ferroptosis in IECs rescued the inhibitory effect of VTN on cell differentiation. Further analysis showed that VTN triggered phosphorylation of PDE4, leading to inhibit PKA/CREB activation and CREB nuclear translocation, which further reduced GPX4 transactivation. Endogenous PKA interacted with CREB, and this interaction was destroyed in response to VTN stimulation. What is more, overexpression of CREB in CaCO2 cells overcame the promotion of VTN on ferroptosis. Most importantly, inhibition of PDE4 by roflumilast or dipyridamole could alleviate dextran sulfate sodium-induced colitis in mice and in a pilot clinical study confirmed by IF. Conclusions: These findings demonstrated that highly expressed VTN disrupted IECs differentiation through PDE4-mediated ferroptosis in IBD, suggesting targeting PDE4 could be a promising therapeutic strategy for patients with IBD.


Subject(s)
Ferroptosis , Inflammatory Bowel Diseases , Mice , Animals , Vitronectin , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Pilot Projects , Inflammatory Bowel Diseases/metabolism , Cell Differentiation
8.
Mediterr J Hematol Infect Dis ; 15(1): e2023040, 2023.
Article in English | MEDLINE | ID: mdl-37435035

ABSTRACT

Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal diseases that are characterized by ineffective bone marrow hematopoiesis. Since studies have confirmed the significance of miRNAs in ineffective hematopoiesis in MDS, the current report elucidated the mechanism mediated by miR-155-5p. The bone marrow of MDS patients was collected to detect miR-155-5p and to analyze the correlation between miR-155-5p and clinicopathological variables. Isolated bone marrow CD34+ cells were transfected with lentiviral plasmids that interfere with miR-155-5p, followed by apoptosis analysis. Finally, miR-155-5p-targeted regulation of RAC1 expression was identified, as well as the interaction between RAC1 and CREB, the co-localization of RAC1 and CREB, and the binding of CREB to miR-15b. As measured, miR-155-5p was upregulated in the bone marrow of MDS patients. Further cell experiments validated that miR-155-5p promoted CD34+ cell apoptosis. miR-155-5p could reduce the transcriptional activity of miR-15b by inhibiting RAC1, dissociating the interaction between RAC1 and CREB, and inhibiting the activation of CREB. Upregulating RAC1, CREB, or miR-15b could reduce miR-155-5p-mediated apoptosis promotion on CD34+ cells. Additionally, miR-155-5p could force PD-L1 expression, and this effect was impaired by elevating RAC1, CREB, or miR-15b. In conclusion, miR-155-5p mediates PD-L1-mediated apoptosis of CD34+ cells in MDS by RAC1/CREB/miR-15b axis, thereby inhibiting bone marrow hematopoiesis.

9.
Cell Commun Signal ; 21(1): 141, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328804

ABSTRACT

BACKGROUND: Metabolic reprogramming is a critical event for cell fate and function, making it an attractive target for clinical therapy. The function of metabolic reprogramming in Helicobacter pylori (H. pylori)-infected gastric intestinal metaplasia remained to be identified. METHODS: Xanthurenic acid (XA) was measured in gastric cancer cells treated with H. pylori or H. pylori virulence factor, respectively, and qPCR and WB were performed to detect CDX2 and key metabolic enzymes expression. A subcellular fractionation approach, luciferase and ChIP combined with immunofluorescence were applied to reveal the mechanism underlying H. pylori mediated kynurenine pathway in intestinal metaplasia in vivo and in vitro. RESULTS: Herein, we, for the first time, demonstrated that H. pylori contributed to gastric intestinal metaplasia characterized by enhanced Caudal-related homeobox transcription factor-2 (CDX2) and mucin2 (MUC2) expression, which was attributed to activation of kynurenine pathway. H. pylori promoted kynurenine aminotransferase II (KAT2)-mediated kynurenine pathway of tryptophan metabolism, leading to XA production, which further induced CDX2 expression in gastric epithelial cells. Mechanically, H. pylori activated cyclic guanylate adenylate synthase (cGAS)-interferon regulatory factor 3 (IRF3) pathway in gastric epithelial cells, leading to enhance IRF3 nuclear translocation and the binding of IRF3 to KAT2 promoter. Inhibition of KAT2 could significantly reverse the effect of H. pylori on CDX2 expression. Also, the rescue phenomenon was observed in gastric epithelial cells treated with H. pylori after IRF3 inhibition in vitro and in vivo. Most importantly, phospho-IRF3 was confirmed to be a clinical positive relationship with CDX2. CONCLUSION: These finding suggested H. pylori contributed to gastric intestinal metaplasia through KAT2-mediated kynurenine pathway of tryptophan metabolism via cGAS-IRF3 signaling, targeting the kynurenine pathway could be a promising strategy to prevent gastric intestinal metaplasia caused by H. pylori infection. Video Abstract.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Homeodomain Proteins/metabolism , CDX2 Transcription Factor/metabolism , Helicobacter pylori/metabolism , Kynurenine/metabolism , Gastric Mucosa/metabolism , Interferon Regulatory Factor-3/metabolism , Tryptophan/metabolism , Stomach Neoplasms/metabolism , Metaplasia/metabolism , Nucleotidyltransferases/metabolism , Helicobacter Infections/metabolism
10.
Lab Invest ; 103(2): 100018, 2023 02.
Article in English | MEDLINE | ID: mdl-37039152

ABSTRACT

Protein kinase D (PKD) has been linked to inflammatory responses in various pathologic conditions; however, its role in inflammation-induced dermal fibrosis has not been evaluated. In this study, we aimed to investigate the roles and mechanisms of protein kinase D2 (PKD2) in inflammation-induced dermal fibrosis and evaluate the therapeutic potential of PKD inhibitors in this disease. Using homozygous kinase-dead PKD2 knock-in (KI) mice, we examined whether genetic ablation or pharmacologic inhibition of PKD2 activity affected dermal inflammation and fibrosis in a bleomycin (BLM)-induced skin fibrosis model. Our data showed that dermal thickness and collagen fibers were significantly reduced in BLM-treated PKD2 KI mice compared with that in wild-type mice, and so was the expression of α-smooth muscle actin and collagens and the mRNA levels of transforming growth factor-ß1 and interleukin-6 in the KI mice. Corroboratively, pharmacologic inhibition of PKD by CRT0066101 also significantly blocked BLM-induced dermal fibrosis and reduced α-smooth muscle actin, collagen, and interleukin-6 expression. Further analyses indicated that loss of PKD2 activity significantly blocked BLM-induced infiltration of monocytes/macrophages and neutrophils in the dermis. Moreover, using bone marrow-derived macrophages, we demonstrated that PKD activity was required for cytokine production and migration of macrophages. We have further identified Akt as a major downstream target of PKD2 in the early inflammatory phase of the fibrotic process. Taken together, our findings indicate that PKD2 promotes dermal fibrosis via regulating immune cell infiltration, cytokine production, and downstream activation of Akt in lesional skin, and targeted inhibition of PKD2 may benefit the treatment of this condition.


Subject(s)
Bleomycin , Protein Kinase D2 , Scleroderma, Systemic , Animals , Mice , Actins/genetics , Actins/metabolism , Bleomycin/toxicity , Collagen/metabolism , Disease Models, Animal , Fibrosis , Inflammation/metabolism , Interleukin-6 , Protein Kinase D2/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt
11.
Clin Exp Pharmacol Physiol ; 50(6): 516-526, 2023 06.
Article in English | MEDLINE | ID: mdl-36897043

ABSTRACT

Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the effect of Rabeprazole on gut barrier function remains to be identified. In this study, we show that ZO-1 expression is decreased in patients receiving Rabeprazole by immunofluorescence (IF) analysis. Western blotting (WB) and real-time PCR (qPCR) results demonstrate that Rabeprazole treatment leads to a significant downregulation of ZO-1 expression through inhibition of the FOXF1/STAT3 pathway, leading to destroy barrier function, which illustrates a novel pathway that Rabeprazole regulates barrier function in gastric epithelial cells. Mechanistically, Rabeprazole treatment led to a downregulation of STAT3 and FOXF1 phosphorylation, leading to inhibit nuclear translocation and decrease the binding of STAT3 and FOXF1 to ZO-1 promoter, respectively. Most important, endogenous FOXF1 interacted with STAT3, and this interaction was dramatically abolished by Rabeprazole stimulation. Overexpression of STAT3 and FOXF1 in GES-1 cells reversed the inhibitory effect of Rabeprazole on ZO-1 expression, respectively. These finding extended the function of Rabeprazole and established a previously unappreciated mechanism by which the Rabeprazole/FOXF1/STAT3 axis facilitated ZO-1 expression to regulate barrier function, and a comprehensive consideration and evaluation was required in treatment of patients.


Subject(s)
Epithelial Cells , Rabeprazole , Signal Transduction , Humans , 2-Pyridinylmethylsulfinylbenzimidazoles/metabolism , Epithelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Rabeprazole/adverse effects , Rabeprazole/metabolism , STAT3 Transcription Factor/metabolism , Stomach , Zonula Occludens-1 Protein/drug effects , Zonula Occludens-1 Protein/metabolism
12.
Vaccines (Basel) ; 11(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36680009

ABSTRACT

Human norovirus (HNV) is one of the emerging and rapidly spreading groups of pathogens and the main cause of epidemic viral gastroenteritis globally. Due to a lack of in vitro culture systems and suitable animal models for HNV infection, murine norovirus (MNV) has become a common model. A recent study showed that MNV activates NLRP3 inflammasome leading to pyroptosis. Jatrorrhizine (JAT) is a natural isoquinoline alkaloid isolated from Coptis Chinensis, which has been proven to have antibacterial, anti-inflammatory, and antitumor effects. However, whether JAT has an effect on norovirus gastroenteritis and the underlying molecular mechanism remain unclear. Here, we found that JAT could ameliorate NLRP3-N-GSDMD-dependent pyroptosis induced by MNV infection through inhibiting the MAPKs/NF-κB signaling pathways and decrease MNV replication in RAW264.7 macrophages, suggesting that JAT has the potential to be a therapeutic agent for treating norovirus gastroenteritis.

13.
Redox Rep ; 27(1): 167-175, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35938579

ABSTRACT

BACKGROUND: The number of neutrophils is significantly reduced in myelodysplastic syndrome (MDS), but the molecular basis remains unclear. We recently found that miR-34a was significantly increased in MDS neutrophils. Therefore, this study aims to clarify the effects of aberrant miR-34a expression on neutrophil counts. METHODS: miR-34a mimics/inhibitor transfection were performed in neutrophil-like differentiated HL60 (dHL60) cells, and a FACSCalibur flow cytometer was used to measure ROS production and apoptosis. In addition, the Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and activator (CN02) treated the dHL60 cells, and then ROS production, apoptosis and related proteins expression were detected. And, luciferase reporter assay to verify the relationship of miR-34a and the Cdc42-WASP-Arp2/3 pathway. RESULTS: overexpression of miR-34a could induce ROS production and apoptosis, decrease the expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3, and increase F-actin's expression. Meanwhile, knockdown of miR-34a could decrease ROS production and apoptosis, increase the expression of DOCK8, p-WASP, WASP, Arp2, Arp3, and decrease F-actin's expression. Immunofluorescence staining showed aberrant miR-34a and Cdc42-WASP-Arp2/3 pathway could induce F-actin membrane transfer. Luciferase reporter assay indicated that DOCK8 was a direct target gene of miR-34a. CONCLUSION: These data indicates miR-34a may induce neutrophil apoptosis by regulating Cdc42-WASP-Arp2/3 pathway-mediated F-actin remodeling and ROS production.


Subject(s)
Actins , MicroRNAs , Actins/genetics , Actins/metabolism , Apoptosis/genetics , MicroRNAs/genetics , Neutrophils/metabolism , Reactive Oxygen Species , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
14.
Mediators Inflamm ; 2022: 8447675, 2022.
Article in English | MEDLINE | ID: mdl-35462789

ABSTRACT

Objective: Identifying new markers of juvenile systemic lupus erythematosus (JSLE) is critical event to predict patient stratification and prognosis. The aim of the present study is to analyze alteration of urinary protein expression and screen potential valuable biomarkers in juvenile systemic lupus erythematosus (JSLE). Methods: The urine was collected from the patients with or without JSLE and detected by mass spectrometry to analyze proteomic changes. ELISA was used to verify the Vitronectin (VTN) changes in a new set of patients. The clinical correlation was performed to analyze between VTN and clinical pathological parameters. WB and ELISA were used to analyze VTN-mediated cell pyroptosis. Results: Herein, we have identified a group of 105 differentially expressed proteins with ≥1.3-fold upregulation or ≤0.77-fold downregulation in JSLE patients. These proteins were involved in several important biological processes, including acute phase inflammatory responses, complement activation, hemostasis, and immune system regulation through Gene Ontology and functional enrichment analysis. Interestingly, urinary ephrin type-A receptor 4 (EPHA4) and VTN were significantly reduced in both inactive and active JSLE patients, and VTN treatment in THP-1 derived macrophages led to a significant increased cell pyroptosis by activation of Nod-like receptor family protein 3 (NLRP3) inflammasomes, resulting in caspase-1 activation, cleaved gasdermin D (GSDMD), and IL-18 secretion. Most importantly, the urinary VTN was also linearly correlated with clinical characteristics of JSLE, implying that VTN could be a specific diagnostic biomarker to distinguish inactive and active JSLE. Conclusion: This study provided a novel role of VTN in pyroptosis in JSLE through the urinary proteomic profile for JSLE, which could be a nonintrusive monitoring strategy in clinical diagnosis.


Subject(s)
Lupus Erythematosus, Systemic , Pyroptosis , Vitronectin , Biomarkers/urine , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/physiopathology , Lupus Erythematosus, Systemic/urine , Mass Spectrometry , NLR Family, Pyrin Domain-Containing 3 Protein/urine , Proteomics , Pyroptosis/physiology , Receptor, EphA4/urine , Vitronectin/urine
15.
Viruses ; 14(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35458572

ABSTRACT

Human norovirus (HuNoV) is one of the major pathogens of acute nonbacterial gastroenteritis. Due to the lack of a robust and reproducible in vitro culture system and an appropriate animal model, the mechanism underlying HuNoV-caused diarrhea remains unknown. In the current study, we found that HuNoV transfection induced the expression of aquaporin 1 (AQP1), which was further confirmed in the context of virus infection, whereas the enterovirus EV71 (enterovirus 71) did not have such an effect. We further revealed that VP1, the major capsid protein of HuNoV, was crucial in promoting AQP1 expression. Mechanistically, HuNoV induces AQP1 production through the NF-κB signaling pathway via inducing the expression, phosphorylation and nuclear translocation of p65. By using a model of human intestinal epithelial barrier (IEB), we demonstrated that HuNoV and VP1-mediated enhancement of small molecule permeability is associated with the AQP1 channel. Collectively, we revealed that HuNoV induced the production of AQP1 by activating the NF-κB signaling pathway. The findings in this study provide a basis for further understanding the significance of HuNoV-induced AQP1 expression and the potential mechanism underlying HuNoV-caused diarrhea.


Subject(s)
Aquaporin 1 , Caliciviridae Infections , NF-kappa B , Norovirus , Animals , Aquaporin 1/genetics , Caco-2 Cells , Diarrhea , Gastroenteritis , Humans , NF-kappa B/metabolism , Signal Transduction
16.
BMC Pharmacol Toxicol ; 22(1): 44, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34266494

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis. Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H. pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro. METHODS: The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH, IL-1ß and IL-18. RESULTS: In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1ß and IL-18 mature and secretion, which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with H. pylori infection. CONCLUSION: These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anti-Ulcer Agents/therapeutic use , Epithelial Cells/drug effects , Helicobacter Infections/drug therapy , Proton Pump Inhibitors/therapeutic use , Rabeprazole/therapeutic use , Adolescent , Anti-Inflammatory Agents/pharmacology , Anti-Ulcer Agents/pharmacology , Cell Line , Child , Child, Preschool , Epithelial Cells/metabolism , Female , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Helicobacter Infections/metabolism , Humans , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , L-Lactate Dehydrogenase/metabolism , Male , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Proton Pump Inhibitors/pharmacology , Pyroptosis/drug effects , Rabeprazole/pharmacology
17.
Front Immunol ; 12: 644862, 2021.
Article in English | MEDLINE | ID: mdl-34093533

ABSTRACT

NLRP3 inflammasome has emerged as a crucial regulator of inflammatory bowel disease (IBD) characterized by a chronic inflammatory disease of the gastrointestinal tract. The expression of MCT4 is significantly increased in intestinal mucosal tissue of IBD, which has been identified to regulate intestinal barrier function. However, the function of MCT4 in cell pyroptosis remained unknown. In this study, we have established a stable cell line with MCT4 overexpression in HT-29 and CaCO2 cells, respectively. Functional analysis revealed that ectopic expression of MCT4 in CaCO2 cells contributed to cell pyroptosis as evidenced by LDH assay, which is largely attributed to Caspase-1-mediated canonical pyroptosis, but not Caspase-4 and Caspase-5, leading to cleave pro-IL-1ß and IL-18 into mature form and release mediated by cleaved GSDMD. Mechanically, MCT4 overexpression in HT-29 and CaCO2 cell triggered the phosphorylation of ERK1/2 and NF-κB p65, while inhibition of MCT4 by MCT inhibitor α-Cyano-4-hydroxycinnamic acid (α-CHCA) in HT-29 and CaCO2 cells led to a significant downregulation of ERK1/2 and NF-κB activity. What's more, blockade of ERK1/2-NF-κB pathway could reverse the promotion effect of MCT4 on IL-1ß expression. Importantly, both MCT4 and Caspase-1, GSDMD were significantly increased in patients with IBD, and a positive clinical correlation between MCT4 and Caspase-1 expression was observed (p < 0.001). Taken together, these findings suggested that MCT4 promoted Caspase-1-mediated canonical cell pyroptosis to aggravate intestinal inflammation in intestinal epithelial cells (IECs) through the ERK1/2-NF-κB pathway.


Subject(s)
Inflammatory Bowel Diseases/immunology , MAP Kinase Signaling System/immunology , Monocarboxylic Acid Transporters/immunology , Muscle Proteins/immunology , Pyroptosis/immunology , Caco-2 Cells , Caspases/immunology , HT29 Cells , Humans , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Interleukin-18/immunology , Interleukin-1beta/immunology , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/immunology , Transcription Factor RelA/immunology
18.
Biochem Pharmacol ; 188: 114525, 2021 06.
Article in English | MEDLINE | ID: mdl-33744226

ABSTRACT

The dysregulation of glycolysis leads to serials of disease. Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the function of Rabeprazole on glycolysis in gastric epithelial cells remained to be identified. In this study, 30(Helicobacter pylori)H. pylori-negative cases and 26H. pylori-positive cases treated with Rabeprazole were recruited. The qPCR and Western blotting results showed that Rabeprazole suppressed cell proliferation by inhibition of HK2-mediated glycolysis in BGC823 cells, leading to decrease glucose uptake and lactate production in a dose-dependent way. Furthermore, the phosphorylation of signal transducer and activator of transcription 3 (STAT3) was drastically reduced in response to Rabeprazole stimulation, leading to attenuate STAT3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis showed that Rabeprazole treatment led to a significant inhibition of the binding of STAT3 to the promoter of the HK2 gene, repressing transcriptional activation of HK2. Moreover, the ectopic expression of STAT3 in BGC823 cells resulted in recovery of HK2 transactivation and cell proliferation in Rabeprazole-treated cells. Most importantly, HK2 expression was significantly increased in H. pylori-infected gastric mucosa. These findings suggested that Rabeprazole inhibited cell proliferation by targeting STAT3/HK2 signaling-mediated glucose metabolism in gastric epithelial cells. Therefore, targeting HK2 is an alternative strategy in improving the treatment of patients with H. pylori infection.


Subject(s)
Cell Proliferation/drug effects , Epithelial Cells/drug effects , Gastric Mucosa/drug effects , Glycolysis/drug effects , Rabeprazole/administration & dosage , STAT3 Transcription Factor/antagonists & inhibitors , Anti-Ulcer Agents/administration & dosage , Cell Line , Cell Proliferation/physiology , Child , Drug Delivery Systems/methods , Epithelial Cells/metabolism , Female , Gastric Mucosa/metabolism , Glycolysis/physiology , Humans , Male , STAT3 Transcription Factor/metabolism
19.
J Agric Food Chem ; 69(4): 1242-1250, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33472359

ABSTRACT

White leaf No.1 (WL-1) is a low temperature-induced albino tea cultivar, which sticks out from tea plants with rich amino acids. Because harmonization of chloroplast ultrastructure integrity and lower chlorophyll contents during the albinism processes is much crucial for WL-1 production under extreme weather conditions, we carried out a field experiment to investigate the regulating effects of exogenous glycinebetaine (GB) on the chloroplast ultrastructure and quality constituents in young leaves of WL-1 at different albinism stages. The internal structure of chloroplasts degenerated at the albinistic stage, and chlorophyll contents were significantly lower than those at pre-albinistic and regreening stages. Spraying GB regulated etioplast-chloroplast transition, significantly increased epigallocatechin gallate, theanine, and caffeine contents, and lowered chlorophyll content in albinistic young leaves of WL-1, thus improving its quality in some aspects, maintaining special leaf color, exerting flavor and umami, and improving antioxidant and refreshing effects. Foliar application of GB is an efficient technical measure in practice.


Subject(s)
Betaine/pharmacology , Camellia sinensis/drug effects , Plant Leaves/chemistry , Camellia sinensis/chemistry , Camellia sinensis/genetics , Camellia sinensis/growth & development , Chlorophyll/metabolism , Cold Temperature , Color , Crop Production , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Tea/chemistry
20.
Biomed Res Int ; 2020: 7647181, 2020.
Article in English | MEDLINE | ID: mdl-33015178

ABSTRACT

BACKGROUND: CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. OBJECTIVE: The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). RESULTS: In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. CONCLUSION: The data suggested that increased CD147 level could be a biomarker of IBD in children.


Subject(s)
Basigin/metabolism , Inflammatory Bowel Diseases/metabolism , Basigin/blood , Child , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Inflammatory Bowel Diseases/blood , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...