Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.698
Filter
1.
Cell Rep ; 43(6): 114301, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823016

ABSTRACT

CD8+ T cells are rendered exhausted in tumor and chronic infection. Among heterogeneous exhausted T cells, a subpopulation of progenitor-like (Tpex) cells have been found important for long-term tumor or pathogen control and are also the main responders in immunotherapy. Using an RFP reporter mouse for the orphan nuclear receptor NR4A1, originally characterized as critical in T cell dysfunction, we discover that the reporter is highly expressed in Tpex cells in tumor and chronic infection. Enforced expression of Nr4a1 promotes Tpex cell accumulation, whereas tumor control is improved after Nr4a1 deletion, associated with increased effector function but decreased long-term maintenance of CD8+ T cells. Integrating chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, NR4A1 is found to bind and promote the expression of Tpex-related genes, as well as suppress terminal differentiation-associated genes. This study therefore has identified a key role of NR4A1 in Tpex regulation and provides a promising target for immunotherapy.

2.
J Colloid Interface Sci ; 671: 702-711, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38823111

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) have received considerable potential for their affordability and high reliability. Among potential cathodes, α-MoO3 stands out due to its layered structure aligned with the (010) plane, offering extensive ionic insertion channels for enhanced charge storage. However, its limited electrochemical activity and poor Zn2+ transport kinetics present significant challenges for its deployment in energy storage devices. To overcome these limitations, we introduce a new strategy by doping α-MoO3 with Ni (Ni-MoO3), tuning the electron spin states of Mo. Thus modification can activate the reactivity of Ni-MoO3 towards Zn2+ storage and weaken the interaction between Ni-MoO3 and intercalated Zn2+, thereby accelerating the Zn2+ transport and storage. Consequently, the electrochemical properties of Ni-MoO3 significantly surpass those of pure MoO3, demonstrating a specific capacity of 258 mAh g-1 at 1 A g-1 and outstanding rate performance (120 mAh g-1 at 10 A g-1). After 1000 cycles at 8 A g-1, it retains 76 % of the initial capacity, with an energy density of 154.4 Wh kg-1 and a power density of 11.2 kW kg-1. This work proves that the modulation of electron spin states in cathode materials via metal ion doping can effectively boost their capacity and cycling durability.

3.
Adv Sci (Weinh) ; : e2401670, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828784

ABSTRACT

Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.

4.
Article in English | MEDLINE | ID: mdl-38828970

ABSTRACT

BACKGROUND: Robotic Roux-en-Y gastric bypass (RRYGB) and conventional laparoscopic Roux-en-Y gastric bypass (LRYGB) are commonly performed as primary bariatric procedures. The aim of this article was to assess the role of RRYGB in patients undergoing primary bariatric procedures. METHODS: All of the qualified studies were selected from the PubMed, Embase, and Web of Science databases, etc. We mainly compared the outcomes and safety between RRYGB and LRYGB. The outcomes evaluation included surgical effect and surgical safety. RESULT: In total, 35 studies containing 426,463 patients were selected. The mortalities of patients adopting these 2 bariatric procedures were similar (RRYGB: 59/28,023, 0.21%; LRYGB: 612/397,945, 0.15%). We found no significant difference between RRYGB and LRYGB in the incidence of postoperative complications (30-day: OR=1.06, P=0.18; 1-y: OR=1.06, P=0.92). The incidence of 30-day readmission after the operation was higher in RRYGB patients (OR=1.24, P=0.003). However, we found that the RRYGB group had a lower incidence of anastomotic stricture 1 year after the operation when compared with LRYGB (OR=0.35, P=0.0004). The 1-year %EBMIL of these 2 groups was similar (78.53% vs. 76.02%). There was no significant difference in length of hospital stay (LOS) (WMD=-0.03d, P=0.59), conversion rate (OR=0.84, P=0.75), or anastomotic leak (OR=1.00, P=0.99) between these 2 groups. The mean hospital charges were higher in the RRYGB group ($11234.75 vs. $9468.58). CONCLUSION: This systematic review and meta-analysis showed no significant advantage of RRYGB in surgical effect or reduction of intraoperative complications. RRYGB may reduce the incidence of some postoperative long-term complications. The mean hospital charges of RRYGB were higher.

5.
ACS Omega ; 9(21): 22744-22753, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826525

ABSTRACT

The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.

6.
Asia Pac Allergy ; 14(2): 45-55, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827256

ABSTRACT

Background: The diagnosis of allergic rhinitis is mainly based on the typical medical history, clinical manifestations, and corresponding allergen test results of the patients. However, there are often clinical inconsistencies among the 3. Objective: To study the clinical characteristics of patients with allergic rhinitis from both subjective and objective aspects to determine the correlations between the quantitative assessment outcomes of subjective and objective indicators. Methods: A total of 111 patients with allergic rhinitis who visited our outpatient clinic from June 2022 to December 2022 were selected. The 22-item sino-nasal outcome test (SNOT-22) and the visual analog scale (VAS) for the severity of the disease were used to score the subjective indicators of allergic rhinitis. The objective indicators of allergic rhinitis were evaluated by serum inhalant allergens immunoglobulin E test, nasal endoscopy modified Lund-Kennedy (MLK) scoring method, and acoustic rhinometry. Results: SNOT-22 score, total VAS score for symptoms, and the VAS score for nasal itching were positively correlated with the number of positive allergens (r = 0.266, P = 0.005, r = 0.576, P < 0.001, and r = 0.271, P = 0.004, respectively). No differences were found in all subjective indicators scores between the total immunoglobulin E positive and negative groups (P > 0.05). SNOT-22 score, total VAS score for symptoms, and the VAS score for nasal congestion were positively correlated with MLK total score of nasal endoscopy (r = 0.343, P < 0.001, r = 0.438, P < 0.001, and r = 0.225, P = 0.018, respectively). Parameters of acoustic rhinometry were not correlated with the subjective indicators scores of allergic rhinitis (P > 0.05). Conclusion: A multifaceted quantitative assessment of allergic rhinitis using a combination of subjective and objective methods can help physicians make an accurate diagnosis and create reasonable treatment plans.

8.
J Econ Entomol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700485

ABSTRACT

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and Spodoptera litura (Fabricius) are the main pests on corn (Poaceae: Gramineae). The performance of the larval wasp, Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae), was reported on S. frugiperda and S. litura. In this study, we evaluated host selectivity, constructed an age-stage, 2-sex life table, and assessed the pest control potential of M. pallidipes against these 2 pests under laboratory conditions. In a 2-choice host preference experiment, M. pallidipes exhibited a stronger preference for S. frugiperda over S. litura and a distinct preference for second instars. We also investigated the parasitism of females that were either unfed or fed with 10% honey-water solution under different host densities and found that the highest parasitism rate was observed when M. pallidipes were fed with honey-water solution on the first day after mating and a presented female wasp:host ratio of 1:90. In a nonselective assay, M. pallidipes successfully completed a full generation on both hosts. However, the parasitoids exhibited higher fitness and population growth potential when reared on S. frugiperda, with a net reproductive rate (R0) of 24.24, an intrinsic rate of increase (r) of 0.20 per day, a finite rate of increase (λ) of 1.23 per day, and a mean generation time (T) of 15.69 days. This study elucidates the performance of M. pallidipes on 2 Spodoptera host species and offers insights into its biological control potential on lepidopteran pests.

9.
Wiley Interdiscip Rev RNA ; 15(3): e1851, 2024.
Article in English | MEDLINE | ID: mdl-38702938

ABSTRACT

Long noncoding RNAs (lncRNA) are a class of non-coding RNAs greater than 200 bp in length with limited peptide-coding function. The transcription of LINC00152 is derived from chromosome 2p11.2. Many studies prove that LINC00152 influences the progression of various tumors via promoting the tumor cells malignant phenotype, chemoresistance, and immune escape. LINC00152 is regulated by multiple transcription factors and DNA hypomethylation. In addition, LINC00152 participates in the regulation of complex molecular signaling networks through epigenetic regulation, protein interactions, and competitive endogenous RNA (ceRNA). Here, we provide a systematic review of the upstream regulatory factors of LINC00152 expression level in different types of tumors. In addition, we revisit the main functions and mechanisms of LINC00152 as driver oncogene and biomarker in pan-cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Subject(s)
Neoplasms , Oncogenes , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes/genetics , Gene Expression Regulation, Neoplastic
10.
Small ; : e2401292, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726946

ABSTRACT

Nanodiamonds are metastable allotropes of carbon. Based on their high hardness, chemical inertness, high thermal conductivity, and wide bandgap, nanodiamonds are widely used in energy and engineering applications in the form of coatings, such as mechanical processing, nuclear engineering, semiconductors, etc., particularly focusing on the reinforcement in mechanical performance, corrosion resistance, heat transfer, and electrical behavior. In mechanical performance, nanodiamond coatings can elevate hardness and wear resistance, improve the efficiency of mechanical components, and concomitantly reduce friction, diminish maintenance costs, particularly under high-load conditions. Concerning chemical inertness and corrosion resistance, nanodiamond coatings are gradually becoming the preferred manufacturing material or surface modification material for equipment in harsh environments. As for heat transfer, the extremely high coefficient of thermal conductivity of nanodiamond coatings makes them one of the main surface modification materials for heat exchange equipment. The increase of nucleation sites results in excellent performance of nanodiamond coatings during the boiling heat transfer stage. Additionally, concerning electrical properties, nanodiamond coatings elevate the efficiency of solar cells and fuel cells, and great performance in electrochemical and electrocatalytic is found. This article will briefly describe the application and mechanism analysis of nanodiamonds in the above-mentioned fields.

11.
Chemistry ; : e202400756, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727558

ABSTRACT

Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln = Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.

12.
J Diabetes Investig ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727884

ABSTRACT

AIMS/INTRODUCTION: Diabetes has been related to an increased risk of oral cancer. Nevertheless, the impact of diabetes on the outcome of individuals with oral and oropharyngeal cancer is not clear. In this study, a meta-analysis was carried out to assess the link between diabetes and the survival of individuals with oral and oropharyngeal cancer. MATERIALS AND METHODS: Relevant cohort studies for the meta-analysis objective were obtained through searching electronic databases, such as PubMed, Web of Science and Embase. The data were combined using a random effects model that accounted for differences between studies. RESULTS: A total of 10 cohorts involving 21,871 patients with oral and oropharyngeal cancer were included. Pooled results suggest that compared with those with normoglycemia, oral and oropharyngeal cancer patients with diabetes were associated with a poor overall survival (hazard ratio 1.69, 95% confidence interval 1.29-2.22, P < 0.001; I2 = 69%). Subgroup analysis suggested a stronger association between diabetes and poor overall survival in patients aged ≥52 years as compared with those aged <52 years (hazard ratio 2.08 vs 1.34, P = 0.03). Other study characteristics, such as study country, tumor stage or follow-up duration, did not seem to significantly affect the association (P for subgroup difference all >0.05). In addition, diabetes was also associated with a poor progression-free survival of patients with oral and oropharyngeal cancer (hazard ratio 1.61, 95% confidence interval 1.30-1.99, P < 0.001; I2 = 9%). CONCLUSIONS: Patients with oral and oropharyngeal cancer might have a poor survival if they have pre-existing diabetes.

13.
Odontology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717525

ABSTRACT

The purpose of this study was to analyze the biomechanical properties of implants made of different materials to replace missing teeth by using three-dimensional finite element analysis and provide a theoretic basis for clinical application. CBCT data was imported into the Mimics and 3-Matic to construct the three-dimensional finite element model of a missing tooth restored by an implant. Then, the model was imported into the Marc Mentat. Based on the variations of the implant materials (titanium, titanium-zirconia, zirconia and poly (ether-ether-ketone) (PEEK)) and bone densities (high and low), a total of eight models were created. An axial load of 150 N was applied to the crown of the implant to simulate the actual occlusal situation. Both the maximum values of stresses in the cortical bone and implant were observed in the Zr-low model. The maximum displacements of the implants were also within the normal range except for the PEEK models. The cancellous bone strains were mainly distributed in the apical area of the implant, and the maximum value (3225 µstrain) was found in PEEK-low model. Under the premise of the same implant material, the relevant data from various indices in low-density bone models were larger than that in high-density bone models. From the biomechanical point of view, zirconia, titanium and titanium-zirconia were all acceptable implant materials for replacing missing teeth and possessed excellent mechanical properties, while the application of PEEK material needs to be further optimized and modified.

14.
Cell Biochem Biophys ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38717641

ABSTRACT

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related death in women. The main contributors to the poor prognosis of ovarian cancer are the high rates of recurrence and metastasis. Studies have indicated a crucial role for hepatitis B virus X Ag-Transactivated Protein 8 (XTP8), a protein containing the DEP domain, in various cellular processes, including cell growth, movement, and differentiation, across several types of cancers. However, the role of XTP8 in ovarian cancer remains unclear. We observed elevated expression of XTP8 in ovarian cancer. Silencing XTP8 inhibited cell proliferation, promoted apoptosis, and yielded contrasting results in cells overexpressing XTP8. Furthermore, XTP8 facilitated ovarian cancer invasion and migration, triggering epithelial-mesenchymal transition (EMT). Mechanistically, XTP8 silencing led to reduced phosphorylation levels of AKT, increased p-AMPK levels, and decreased p-mTOR levels, while XTP8 overexpression exerted the opposite effects. Additionally, the activation of p-AMPK rescued the promoting effect of XTP8 on EMT in ovarian cancer cell lines, indicating that XTP8 acts as an oncogene by modulating the AKT/AMPK/mTOR pathway. Through transcriptome sequencing to identify downstream targets of XTP8, we found that XTP8 influences the expression of Caldesmon (CALD1) at both transcriptional and translational levels. CALD1 can be considered a downstream target of XTP8. The collaborative action of XTP8 and CALD1 activates the AKT/AMPK/mTOR pathway, regulating EMT to promote ovarian cancer progression. Inhibiting this signaling axis might represent a potential therapeutic target for ovarian cancer.

15.
Hum Vaccin Immunother ; 20(1): 2338984, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38698555

ABSTRACT

CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.


Subject(s)
Bibliometrics , Immunotherapy, Adoptive , Neoplasms , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/methods , Biomedical Research/trends , Receptors, Chimeric Antigen/immunology
16.
Regen Ther ; 26: 27-32, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798743

ABSTRACT

Objective: We aimed to examine whether heparin-binding epidermal growth factor-like growth factor (HB-EGF) affects the lung fibrosis process through the activation of p38 protein in mitogen-activated protein kinases (MAPK) signaling pathway, as well as the expression of downstream inflammatory factors. Methods: The expression levels of HB-EGF, collagen type I (COL-I), and hexokinase 2 (HK2) in peripheral blood mononuclear cells (PBMCs) of patients with connective tissue disease-related interstitial lung disease (CTD-ILD) were examined by qPCR, Western blotting and ELISA. Results: In vitro experiments showed that HB-EGF was increased in almost all subtypes [rheumatoid arthritis (RA), systemic sclerosis (SSc) and idiopathic inflammatory myopathies (IIMs)] as well as in all groups (P < 0.05). For embryonic lung fibroblast (A549) cells, the expression levels of HK2 and α-smooth muscle actin (α-SMA) genes were elevated during 0-4 h and then plateaued. Transforming growth factor-ß1 (TGF-ß1) induced fibrosis in human embryonic lung fibroblasts (MRC-5) cells and A549 for a certain period of time, but the degree of induction varied, which may be related to the redifferentiability of cells at different spatial locations. Moreover, HB-EGF at concentrations above 1 ng/ml stimulation increased COL-I expression (P < 0.05), and for α-SMA gene, even 1 ng/ml concentration of HB-EGF had a stimulatory effect, and different concentrations of HB-EGF did activate the expression of p38 in a concentration-dependent manner within a certain concentration range, and by The qPCR results showed that for interleukin 6 (IL-6), an inflammatory factor regulated downstream of p38, the expression was significantly increased in A549 cells compared to control (P < 0.05), but tumor necrosis factor-α (TNF-α) expression was downregulated (P < 0.05), but for interleukin-1ß (IL-1ß) gene, there was no significant difference in A549 cells, and expression was downregulated in MRC-5 cells. Therefore, it is suggested that HB-EGF regulates the expression of inflammatory factors through p38 will be differential across cells. Conclusion: Our study shows that HB-EGF can suppress pulmonary fibrosis through downstream activation of p38/MAPK pathway activity, as well as the expression of various inflammatory factors downstream of it.

17.
Front Plant Sci ; 15: 1387575, 2024.
Article in English | MEDLINE | ID: mdl-38736453

ABSTRACT

Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.

18.
Leukemia ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750139

ABSTRACT

The clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma (ND-DLBCL) remains largely unexplored. One hundred ND-DLBCL patients were consecutively enrolled as training cohort and another 26 ND-DLBCL patients were prospectively enrolled in validation cohort. CSF-ctDNA positivity (CSF(+)) was identified in 25 patients (25.0%) in the training cohort and 7 patients (26.9%) in the validation cohort, extremely higher than CNS involvement rate detected by conventional methods. Patients with mutations of CARD11, JAK2, ID3, and PLCG2 were more predominant with CSF(+) while FAT4 mutations were negatively correlated with CSF(+). The downregulation of PI3K-AKT signaling, focal adhesion, actin cytoskeleton, and tight junction pathways were enriched in CSF(+) ND-DLBCL. Furthermore, pretreatment CSF(+) was significantly associated with poor outcomes. Three risk factors, including high CSF protein level, high plasma ctDNA burden, and involvement of high-risk sites were used to predict the risk of CSF(+) in ND-DLBCL. The sensitivity and specificity of pretreatment CSF-ctDNA to predict CNS relapse were 100% and 77.3%. Taken together, we firstly present the prevalence and the genomic and transcriptomic landscape for CSF-ctDNA(+) DLBCL and highlight the importance of CSF-ctDNA as a noninvasive biomarker in detecting and monitoring of CSF infiltration and predicting CNS relapse in DLBCL.

19.
Heliyon ; 10(9): e30388, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756581

ABSTRACT

Objective: This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods: Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results: SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion: SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.

20.
Chem Sci ; 15(19): 7178-7186, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756822

ABSTRACT

In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...