Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202403508, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38647357

ABSTRACT

MXenes have extensive applications due to their different properties determined by intrinsic structures and various functional groups. Exploring different functional groups of MXenes leads to improved performance or potential applications. In this work, we prepared new Ti3C2PBrx (x=0.4-0.6) MXene with phosphorus functional groups (-P) through a two-step gas-phase reaction. The acquisition of -P is achieved by replacing bromine functional groups (-Br) of Ti3C2Br2 in the phosphorus vapor. After -Br is replaced with -P, Ti3C2PBrx MXene shows an improved areal capacitance (360 mF cm-2) at 20 mV s-1 compared with Ti3C2Br2 MXene (102 mF cm-2). At a current density of 5 mA cm-2 after 10000 cycles, the capacitance retention of Ti3C2PBrx MXene has not decreased. The pseudocapacitive enhancement mechanism has been discovered based on the dual redox sites of the functional groups -P and Ti.

2.
Nano Lett ; 24(18): 5543-5549, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652819

ABSTRACT

It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.

3.
J Colloid Interface Sci ; 656: 262-269, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37995396

ABSTRACT

The exploration of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) is of great interest for the development of electrochemical hydrogen production technologies. Herein, nanoporous Ni-based catalyst with Mo and B co-addition (NiMoB) prepared by dealloying is reported as an efficient electrocatalysts for HER. The nanoporous NiMoB achieves an overpotential of 31 mV at 10 mA cm-2, along with exceptional catalytic stability in alkaline electrolyte. Density functional theory (DFT) calculations reveal that the incorporation of Mo and B can synergistically optimize the electronic structure and regulate the adsorption of HER intermediates on the Ni active site, thus accelerating the HER kinetics. This study provides a new perspective for the development of non-precious Ni-based catalysts towards efficient hydrogen energy conversion.

4.
Adv Mater ; 35(26): e2301127, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119501

ABSTRACT

The electrochemical reduction of carbon dioxide into multi-carbon products (C2+ ) using renewably generated electricity provides a promising pathway for energy and environmental sustainability. Various oxide-derived copper (OD-Cu) catalysts have been showcased, but still require high overpotential to drive C2+ production owing to sluggish carbon-carbon bond formation and low CO intermediate (*CO) coverage. Here, the dilemma is circumvented by elaborately devising the OD-Cu morphology. First, computational studies propose a hollow and hierarchical OD-Cu microstructure that can generate a core-shell microenvironment to inhibit CO evolution and accelerate *CO dimerization via intermediate confinement and electric field enhancement, thereby boosting C2+ generation. Experimentally, the designed nanoarchitectures are synthesized through a heteroseed-induced approach followed by electrochemical activation. In situ spectroscopic studies further elaborate correlation between *CO dimerization and designed architectures. Remarkably, the hierarchical OD-Cu manifests morphology-dependent selectivity of CO2 reduction, giving a C2+ Faradaic efficiency of 75.6% at a considerably positive potential of -0.55 V versus reversible hydrogen electrode.

5.
J Colloid Interface Sci ; 638: 893-900, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36690570

ABSTRACT

Transition metal (TM) sulfides are promising catalysts for water splitting in alkaline media due to their high intrinsic activities and similar TM-S electronic structure with hydrogenase. In this work, the nanoporous FeCoNbS electrocatalyst with nanosheet morphology is synthesized through dealloying AlFeCoNb alloy followed by the steam sulphurization. The introduction of S element improves the electronic structure, further increases the active sites, regulates the mass transfer and enhances the intrinsic activity. The Nb introduction improves the electron transfer ability of the catalyst. The synergistic effect of Fe, Co and Nb improves the intrinsic activity of the active site. The FeCoNbS catalyst exhibits good catalytic performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution. The overpotentials at 10 mA cm-2 of HER and OER are 83 and 241 mV, respectively. The Tafel slopes of HER and OER are 101.2 and 35.5 mV dec-1, respectively. The FeCoNbS can serve as overall water splitting electrode with the decomposition voltage of 1.61 V at 10 mA cm-2.

6.
Angew Chem Int Ed Engl ; 62(13): e202300800, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36720713

ABSTRACT

It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121877, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36174402

ABSTRACT

Microwave chemistry plays an important role in organic synthesis. It has been debatable whether or not there are microwave non-thermal effects. Through analyzing the Raman spectra of pure water under two different heating methods (oil bath and microwave), the existence of microwave non-thermal effect is verified in this paper. The findings demonstrate that temperature has a significant impact on the Raman shift of the OH stretching band, which shifts to a high wave number as temperature rises and deforms the hydrogen bond (HB) network structure. Because microwave electric fields selectively heat water molecules (polar molecules) and destroy hydrogen bond structures in water, results in microwave heating more severe destruction of fully hydrogen-bonded structure than oil bath and transforms it more quickly into the partially hydrogen-bonded and free H2O structure. Under the non-thermal effects of microwaves, hydrogen bonds that initially existed as stable tetrahedral structures are transformed into chain-like structures more rapidly. By comparing the Raman shift, it can be found that the microwave non-thermal effect can affect the hydrogen bonding in water for a long time (>1h). This study provides an experimental basis for enriching the mechanism of microwave non-thermal effects on hydrogen bonding.


Subject(s)
Spectrum Analysis, Raman , Water , Hydrogen Bonding , Spectrum Analysis, Raman/methods , Water/chemistry , Microwaves , Hydrogen
8.
Adv Mater ; 33(42): e2101126, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34480495

ABSTRACT

Ambient nitrogen reduction reaction (NRR) is attracting extensive interest but still suffers from sluggish kinetics owing to competitive rapid hydrogen evolution and difficult nitrogen activation. Herein, nanoporous NiSb alloy is reported as an efficient electrocatalyst for N2 fixation, achieving a high ammonia yield rate of 56.9 µg h-1 mg-1 with a Faradaic efficiency of 48.0%. Density functional theory calculations reveal that in NiSb alloy, Ni favors N2 hydrogenation while the neighboring Sb separates active sites for proton and N2 adsorption, which optimizes the adsorption/desorption of intermediates and enables an energetically favorable NRR pathway. This work indicates promising electrocatalytic application of the alloys of 3d and p block metals toward the NRR and provides an intriguing strategy to enhance the reduction of inert molecules by restraining the competitive hydrogen adsorption.

9.
Chem Commun (Camb) ; 56(80): 11957-11960, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33033815

ABSTRACT

Isolated diatomic Zn-Fe anchored on nitrogen-doped carbon is explored as an efficient and robust electrocatalyst for N2 reduction in a neutral aqueous electrolyte, delivering a high NH3 yield rate (30.5 µg h-1 mgcat.-1) and considerable faradaic efficiency (26.5%) at a low overpotential of -300 mV. Density functional theory calculations reveal that the Zn-Fe atomic pairs synergistically favor N2 activation and reduce the reaction barrier for the rate-limiting step of intermediate *NNH formation.

10.
Materials (Basel) ; 13(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066396

ABSTRACT

The microwave sintering of glass-ceramics, non-thermal microwave effect, and crystal growth mechanism remain important challenges in materials science. In this study, we focus on developing approaches to affect crystal growth in the glass network of glass-ceramics by microwave heating, rather than performing a single study on the crystal structure and type. Raman spectroscopy is used to detect the structure of the glass network. We demonstrated that the non-thermal microwave effect promoted the diffusion of metal ions, which promoted the aggregation and precipitation of metal ions in the glass network to form crystals. The samples produced by microwave heating contain more non-bridging oxygen bonds than conventional sintered samples; therefore, the non-thermal microwave effect has a depolymerization effect on the glass network of the sample. Under the influence of microwave field, many metal ions precipitate, which precipitates many crystal nuclei. In addition, many active metal ions are captured during the crystal nucleus growth, which shortens the sintering process of glass-ceramics.

11.
Angew Chem Int Ed Engl ; 59(9): 3511-3516, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-31889387

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco-friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 µg h-1 mg-1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate-limiting *N2 H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.

12.
Adv Mater ; 32(3): e1806326, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30932263

ABSTRACT

Electrochemical water splitting is a promising technology for sustainable conversion, storage, and transport of hydrogen energy. Searching for earth-abundant hydrogen/oxygen evolution reaction (HER/OER) electrocatalysts with high activity and durability to replace noble-metal-based catalysts plays paramount importance in the scalable application of water electrolysis. A freestanding electrode architecture is highly attractive as compared to the conventional coated powdery form because of enhanced kinetics and stability. Herein, recent progress in developing transition-metal-based HER/OER electrocatalytic materials is reviewed with selected examples of chalcogenides, phosphides, carbides, nitrides, alloys, phosphates, oxides, hydroxides, and oxyhydroxides. Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented. Remaining challenges and future perspectives for the further development of self-supported electrocatalysts are also discussed.

13.
Sci Rep ; 5: 18125, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26648397

ABSTRACT

We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...