Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Brain Mapp ; 45(4): e26636, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488458

ABSTRACT

Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.


Subject(s)
Memory, Short-Term , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Memory, Short-Term/physiology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Mental Recall
2.
Cereb Cortex ; 33(10): 5937-5946, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36617305

ABSTRACT

The leftward asymmetry of the visual field and posterior brain regions, a feature of the normal attention process, can be strengthened by brain stimulation, e.g. administering alpha frequency stimulation to the left posterior cortex. However, whether it can be strengthened by cognitive training, especially with nonlateralized tasks, is unknown. We used a dataset from a 2-month-long randomized controlled trial and compared the control group with 2 training groups trained with backward or forward memory span tasks. A lateralized change detection task with varied memory loads was administered as the pre-, mid-, and post-tests with simultaneous electroencephalographic recording. Intrasubject response variability (IRV) and the alpha modulation index (MI) were calculated. Analysis of IRV showed more enhanced leftward attentional bias in the backward group than in the other groups. Consistently, analysis of MI found that its enhancements in the left hemisphere (but not the right hemisphere) of the backward group were significantly higher than those of the other groups. Further analysis revealed that left MI changes predicted left IRV improvement. All of these results indicated that backward memory span training enhanced leftward attentional asymmetry at both the behavioral and neural levels.


Subject(s)
Attentional Bias , Memory, Short-Term , Memory, Short-Term/physiology , Attention/physiology , Brain/physiology , Visual Fields
3.
Int J Phytoremediation ; 17(7): 693-700, 2015.
Article in English | MEDLINE | ID: mdl-25976883

ABSTRACT

This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.


Subject(s)
Alkanes/metabolism , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Zea mays/metabolism , Biodegradation, Environmental , Petroleum/analysis
4.
Int J Phytoremediation ; 17(10): 945-50, 2015.
Article in English | MEDLINE | ID: mdl-25581531

ABSTRACT

A pot experiment was conducted to investigate the effects of pollination on cadmium (Cd) phytoextraction from soil by mature maize plants. The results showed that the unpollinated maize plants accumulated 50% more Cd than that of the pollinated plants, even though the dry weight of the former plants was 15% less than that of the latter plants. The Cd accumulation in root and leaf of the unpollinated maize plant was 0.47 and 0.89 times higher than that of the pollinated plant, respectively. The Cd concentration in the cob was significantly decreased because of pollination. Preventing pollination is a promising approach for enhancing the effectiveness of phytoextraction in Cd-contaminated soils by maize. This study suggested that in low Cd-contaminated soil pollination should be encouraged because accumulation of Cd in maize grains is very little and maize seeds can bring farmers economic benefits, while in high Cd-contaminated soil, inhibition of pollination can be applied to enhance phytoextraction of Cd from soil by maize plant.


Subject(s)
Cadmium/metabolism , Pollination , Soil Pollutants/metabolism , Zea mays/physiology , Biodegradation, Environmental , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Shoots/chemistry
5.
Ecotoxicol Environ Saf ; 112: 1-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25463846

ABSTRACT

Understanding the uptake of organic pollutants by plants is an important part of the assessment of risks from crops grown on contaminated soils. This study was an investigation of the effects of surfactants added to PAHs-contaminated soil on the uptake and accumulation of PAHs in maize tissues during phytoremediation. The accumulation of phenanthrene (PHE) and pyrene (PYR) by maize plant was not influenced significantly by the surfactant amendment to the soil. The distribution of PHE and PYR in maize tissues was not positively correlated with the corresponding lipid contents. Remarkably, the concentrations of PHE (20.9 ng g(-1)) and PYR (0.9 ng g(-1)) in maize grain were similar to or even much lower than those in some foods. Moreover, surfactants could enhance the removal of pollutants from contaminated soil during phytoremediation, which might be due to surfactant desorption ability and microbial activity in soil. The study suggests that use of maize plant with surfactant is an alternative technology for remediation of PAHs-contaminated soils.


Subject(s)
Phenanthrenes/toxicity , Pyrenes/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Surface-Active Agents/pharmacology , Zea mays/drug effects , Biodegradation, Environmental , Edible Grain/drug effects , Edible Grain/metabolism , Glycolipids/pharmacology , Octoxynol/pharmacology , Saponins/pharmacology , Tissue Distribution , Zea mays/growth & development
6.
Bioinorg Chem Appl ; 2013: 959764, 2013.
Article in English | MEDLINE | ID: mdl-24348276

ABSTRACT

Maize is an economic crop that is also a candidate for use in phytoremediation in low-to-moderately Cd-contaminated soils, because the plant can accumulate high concentration of Cd in parts that are nonedible to humans while accumulating only a low concentration of Cd in the fruit. Maize cultivars CT38 and HZ were planted in field soils contaminated with Cd and nitrilotriacetic acid (NTA) was used to enhance the phytoextractive effect of the maize. Different organs of the plant were analyzed to identify the Cd sinks in the maize. A distinction was made between leaf sheath tissue and leaf lamina tissue. Cd concentrations decreased in the tissues in the following order: sheath > root > lamina > stem > fruit. The addition of NTA increased the amount of Cd absorbed but left the relative distribution of the metal among the plant organs essentially unchanged. The Cd in the fruit of maize was below the Chinese government's permitted concentration in coarse cereals. Therefore, this study shows that it is possible to conduct maize phytoremediation of Cd-contaminated soil while, at the same time, harvesting a crop, for subsequent consumption.

SELECTION OF CITATIONS
SEARCH DETAIL