Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Carcinog ; 61(8): 797-811, 2022 08.
Article in English | MEDLINE | ID: mdl-35687049

ABSTRACT

As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinogenesis , Cell Line, Tumor , Cell Proliferation/genetics , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Up-Regulation
2.
Carcinogenesis ; 42(11): 1337-1346, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34643214

ABSTRACT

Genetic alterations in the cell cycle pathway are common in head and neck squamous cell carcinoma (HNSCC). We identified four novel HNSCC susceptibility loci (CDKN1C rs452338, CDK4 rs2072052, E2F2 rs3820028 and E2F2 rs2075993) through a two-stage matched case-control study. There was a combined effect among the four single nucleotide polymorphisms (SNPs), as the number of risk genotypes increased, the risk of HNSCC displayed an increasing trend (Ptrend < 0.001). And there were multiplicative interactions between rs452338 and rs2072052, rs2072052 and rs3820028, rs2072052 and rs2075993. Functional bioinformatics analysis and dual-luciferase reporter assay revealed that E2F2 rs2075993 T>C reduced the stability of E2F2 3'-UTR secondary structure and affected the binding of E2F2 to miR-940, which was up-regulated in HNSCC tumor tissues (P = 2.9e-8) and was correlated with poor overall survival of HNSCC (HR = 1.39, 95% CI = 1.02-1.90). In vitro assays, we discovered that the expression of miR-940 was regulated by METTL3, and miR-940 promoted the proliferation, migration and invasion, and inhibited the senescence and autophagy of tumor cells. In terms of mechanism, compared with rs2075993 allele T, we found that the protective variant rs2075993 allele C interfered with the translational inhibition of E2F2 by miR-940, resulting in increased expression of E2F2 protein, which further reduced the proliferation, migration, invasion, and increased the senescence of tumor cells.


Subject(s)
Genes, cdc , Genetic Predisposition to Disease , Head and Neck Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , 3' Untranslated Regions , Case-Control Studies , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , China , E2F2 Transcription Factor/metabolism , Head and Neck Neoplasms/pathology , Humans , Methyltransferases/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Polymorphism, Single Nucleotide , Protein Binding , Squamous Cell Carcinoma of Head and Neck/pathology
3.
PLoS One ; 8(9): e72633, 2013.
Article in English | MEDLINE | ID: mdl-24086261

ABSTRACT

BACKGROUND: O(6)-methylguanine-DNA methyltransferase (MGMT) is one of most important DNA repair enzyme against common carcinogens such as alkylate and tobacco. Aberrant promoter methylation of the gene is frequently observed in non-small cell lung cancer (NSCLC). However, the importance of epigenetic inactivation of the gene in NSCLC published in the literature showed inconsistence. We quantified the association between MGMT promoter methylation and NSCLC using a meta-analysis method. METHODS: We systematically reviewed studies of MGMT promoter methylation and NSCLC in PubMed, EMBASE, Ovid, ISI Web of Science, Elsevier and CNKI databases and quantified the association between MGMT promoter methylation and NSCLC using meta-analysis method. Odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated to evaluate the strength of association. Potential sources of heterogeneity were assessed by subgroup analysis and meta-regression. RESULTS: A total of 18 studies from 2001 to 2011, with 1, 160 tumor tissues and 970 controls, were involved in the meta-analysis. The frequencies of MGMT promote methylation ranged from 1.5% to 70.0% (median, 26.1%) in NSCLC tissue and 0.0% to 55.0% (median, 2.4%) in non-cancerous control, respectively. The summary of OR was 4.43 (95% CI: 2.85, 6.89) in the random-effects model. With stratification by potential source of heterogeneity, the OR was 20.45 (95% CI: 5.83, 71.73) in heterogeneous control subgroup, while it was 4.16 (95% CI: 3.02, 5.72) in the autologous control subgroup. The OR was 5.31 (95% CI: 3.00, 9.41) in MSP subgroup and 3.06 (95% CI: 1.75, 5.33) in Q-MSP subgroup. CONCLUSION: This meta-analysis identified a strong association between methylation of MGMT gene and NSCLC. Prospective studies should be required to confirm the results in the future.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Promoter Regions, Genetic , Case-Control Studies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...