Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(35): 24628-24638, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37601589

ABSTRACT

Acetylene hydrogenation is a well-accepted solution to reduce by-products in the ethylene production process, while one of the key technical difficulties lies in developing a catalyst that can provide highly dispersed active sites. In this work, a highly crystalline layered covalent organic framework (COF) material (TbBpy) with excellent thermal stability was synthesized and firstly applied as support for ultrasmall Pd nanoparticles to catalyze acetylene hydrogenation. 100% of C2H2 conversion and 88.2% of C2H4 selectivity can be obtained at 120 °C with the space velocity of 70 000 h-1. The reaction mechanism was elucidated by applying a series of characterization techniques and theoretical calculation. The results indicate that the coordination between Pd and N atom in the bipyridine functional groups of COFs successfully increased the dispersibility and stability of Pd particles, and the introduction of COFs not only improved the adsorption of acetylene and H2 onto catalyst surface, but enhanced the electron transfer process, which can be responsible for the high selectivity and activity of catalyst. This work, for the first time, reported the excellent performance of Pd@TbBpy as a catalyst for acetylene hydrogenation and will facilitate the development and application of COFs materials in the area of petrochemicals.

2.
J Am Chem Soc ; 135(43): 16058-61, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24124647

ABSTRACT

An iron oxychloride (FeOCl) catalyst was developed for oxidative degradation of persistent organic compounds in aqueous solutions. Exceptionally high activity for the production of hydroxyl radical (OH·) by H2O2 decomposition was achieved, being 2-4 orders of magnitudes greater than that over other Fe-based heterogeneous catalysts. The relationship of catalyst structure and performance has been established by using multitechniques, such as XRD, HRTEM, and EPR. The unique structural configuration of iron atoms and the reducible electronic properties of FeOCl are responsible for the excellent activity. This study paves the way toward the rational design of relevant catalysts for applications, such as wastewater treatment, soil remediation, and other emerging environmental problems.


Subject(s)
Environmental Pollutants/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Iron Compounds/chemistry , Iron/chemistry , Organic Chemicals/chemistry , Catalysis , Ferric Compounds , Filtration , Hydrogen-Ion Concentration , Kinetics , Reactive Oxygen Species , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...