Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11574, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798959

ABSTRACT

Alkalinity production is one of the most typical and widespread salinization hazards on the Loess Plateau. Based on the characterization of typical flooding sites and the results of salt monitoring, this study investigates the deterioration mechanism of salinization on Zhouqiao site. The orthogonal test was used to simulate the effects of different concentrations of MgSO4, NaCl and CaCl2 under natural conditions on the quality change, salt analysis out location, surface phenomenon, strength and electrical conductivity of the soil at the Zhouqiao site, and to make a preliminary analysis on the mechanism of saline deterioration of the site soil. The results show that the soil column mass increased significantly under the action of salt, and the rate of salt absorption in the soil column decreased when the critical value was reached, and the critical values were different under the action of different kinds of salts. The rate of salt analysis is also influenced by the salt concentration and the number of cycles, which gradually increases with the increase of salt concentration and the number of cycles. The nominal strength of the soil column with the number of cycles, but occasionally increases. The conductivity increases with the number of cycles, and the magnitude distribution of the conductivity of the soil column under the action of different salts is not exactly the same.


Subject(s)
Salts , Soil , Sodium Chloride
2.
Materials (Basel) ; 15(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35683239

ABSTRACT

Fracture characteristics are the basis of silty clay fracture research, and its quantitative description is helpful to explore the engineering properties of silty clay. The silty clay samples with different moisture contents and different aspect ratios were prepared by the controlled variable method for the drying shrinkage test. The crack image processing and crack feature extraction were performed by PS and IPP software, and the relationship between the crack propagation characteristic parameters and the change in humidity and sample moisture content during drying shrinkage were analyzed to explore the crack development law. The results show that under the continuous action of the environment, cracks were generated at the initial high temperature (46 °C). When the temperature changed from a high temperature (46 °C) to a low temperature (27 °C), the moisture content decreased faster, and the crack developed rapidly. Later, from low temperature (12 °C) to high temperature (46 °C), the water content and crack parameters remained basically unchanged; the cracks of the samples with a high moisture content appeared early, developed rapidly, and damaged seriously. When the aspect ratio was 6:1, the crack developed vertically, and when the aspect ratio was less than 6:1, the secondary crack was about 90° from the upper crack.

3.
Materials (Basel) ; 15(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744210

ABSTRACT

In this paper, a method to control the lime reaction by different slaking conditions is proposed to reduce the occurrence of cracks in newly repaired earthen city walls. The effects and mechanisms of the slaking time (0 h, 12 h, 24 h, 48 h and 72 h), lime content (10%, 15% and 20%), and moisture content (14%, 18% and 22%) on the cracking and mechanical properties of lime soil were analyzed by the test results of surface cracks, triaxial compression, particle gradation, pH value, X-ray diffraction and scanning electron microscope. The results show that proper slaking of lime soil specimens can reduce surface cracks and improve mechanical properties. After 12 h of appropriate slaking, the crack rate of the lime soil with 20% content decreased by 97.13%, the cohesion increased by 20.27%, and the internal friction angle decreased by 11.27%. However, the mechanical properties decreased when the slaking time was too long. After 72 h of slaking, the cohesion of 20% lime soil decreased by 8.21% and the internal friction angle increased by 2.82%. Further analysis shows that the appropriate slaking conditions can regulate the reaction rate and alkali environment, control the lime produced cementitious substances, improve the particle gradation and further reduce the occurrence of surface cracks. These results provide a basis for the restoration technology of newly repaired earthen city walls.

4.
Materials (Basel) ; 15(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269050

ABSTRACT

Generally, brick buildings are in the open-air environment year round, and damage to them is aggravated by the effect of repeated freezing and thawing cycles. In order to determine freeze-thaw damage and deterioration mechanism, the initial moisture content of gray brick specimens was set as 20%, 40%, 60%, 80%, 100%. The effects of moisture content and the number of freeze-thaw cycles on the quality, mechanical properties and microstructure of gray brick were investigated by uniaxial compression tests and scanning electron microscopy (SEM) tests. Numerical simulations were applied to model the freezing and thawing process. The results showed that: as the number of freeze-thaw cycles increased, the mass loss rate and peak strength reduction rate of gray brick both increased. The initial moisture content had a greater impact on damage to gray brick due to freeze-thaw; ω = 80% was defined as the limit moisture content of gray brick. Under the repeated action of freeze-thaw cycles, the areas affected by thermal stress were mainly concentrated in the center of the outer surface and the center of the side of gray bricks. The maximum thermal stress after 55 freeze-thaw cycles was 1.522 × 10-2 MPa. This research results provide a theoretical basis for the prevention and protection of frost damage of brick buildings in a freeze-thaw environment.

5.
Micromachines (Basel) ; 12(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34577678

ABSTRACT

The coupling of the microfluidic chip to mass spectrometry (MS) has attracted considerable attention in the area of chemical and biological analysis. The most commonly used ionization technique in the chip-MS system is electrospray ionization (ESI). Traditional chip-based ESI devices mainly employ direct electrical contact between the electrode and the spray solvent. In this study, a microchip ESI source based on a novel polarization-splitting approach was developed. Specifically, the droplet in the microchannel is first polarized by the electric field and then split into two sub-droplets. In this process, the charge generated by polarization is retained in the liquid, resulting in the generation of two charged droplets with opposite polarities. Finally, when these charged droplets reach the emitter, the electrospray process is initiated and both positive and negative ions are formed from the same solution. Preliminary experimental results indicate that the coupling of this polarization-splitting ESI (PS-ESI) chip with a mass spectrometer enables conventional ESI-MS analysis of various analytes.

6.
Anal Chim Acta ; 1157: 338386, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33832586

ABSTRACT

Baseline correction is an indispensable step in the signal processing of chemical analysis instruments. With the increasing demand for on-site applications, a variety of analytical instruments require a more friendly, rapid and adaptive baseline correction method. In this paper, a data-driven and coarse-to-fine (DD-CF) baseline correction scheme mainly based on the empirical mode decomposition (EMD) algorithm is proposed. For eliminating the mode-mixing effect of the original EMD, the proposed method firstly obtains a coarse baseline estimation using automatic peak detection, elimination and interpolation; and the EMD is applied on the coarse baseline to get a fine baseline finally. We have compared this method with the adaptive iteratively reweighted Penalized Least Squares algorithm (airPLS) and the sparse representation baseline correction methods using simulated signals and experimental signals from different analytical instruments. Results indicate that the proposed DD-CF scheme can effectively estimate the baseline more accurate than the comparing methods for varies of analytical signals such as mass spectrometer, ion mobility spectrometer, gas chromatograph, etc. Furthermore, with signals of different length, different peak distributions and even from totally different instruments, the proposed method requires minimal user intervention, in which the parameters of the comparing methods should be adjusted for a wide range.

SELECTION OF CITATIONS
SEARCH DETAIL
...