Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Molecules ; 25(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164302

ABSTRACT

Frost damage of concrete has significant effects on the safety and durability of concrete structures in cold regions, and the concrete structures after repair and reinforcement are still threatened by cyclic freezing and thawing. In this study, the new-to-old concrete interface was reinforced by steel bar. The shear strength of the new-to-old concrete interface was tested after the new-to-old combination was subjected to cyclic freeze-thaw. The effects of the diameter of the steel bar, the compressive strength of new concrete, the number of freeze-thaw cycles and the freezing temperatures on the shear properties of new-to-old concrete interface were studied. The results showed that, in a certain range, the shear strength of the interface was proportional to the diameter of the steel bar and the strength of the new concrete. Meanwhile, the shear strength of the reinforced interface decreased with the decreasing of the freezing temperature and the increasing of the number of freeze-thaw cycles.


Subject(s)
Steel/chemistry , Cold Temperature , Compressive Strength , Construction Materials , Freezing
2.
Sci Rep ; 5: 15152, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26468777

ABSTRACT

Previous research has shown that the temperature of underlying permafrost decreases after the ground surface is covered with sand. No significant conclusions have yet been drawn that explain why this happens, because the heat transfer mechanism effects of the sand layer on the underlying permafrost remain unclear. These mechanisms were studied in the present work. We found that the upward shortwave radiation flux of the Qinghai-Tibet Plateau ground surface with a sand layer covering was higher than that of the surface without sand; thus, the atmospheric heat reflected by the sand layer is greater than that reflected by the surface without sand. Therefore, the net radiation of the surface with the sand layer is lower than that of the surface without sand, which reduces the heat available to warm the sand layer. Because sand is both a porous medium and a weak pervious conductor with poor heat conductivity, less heat is conducted through the sand layer to the underground permafrost than in soil without the sand deposition layer. This phenomenon results in a decrease in the ground temperature of the permafrost under the sand layer, which plays a key role in protecting the permafrost.

SELECTION OF CITATIONS
SEARCH DETAIL
...