Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 31(3): 033133, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33810755

ABSTRACT

The interplay between interaction, disorder, and dissipation has shown a rich phenomenology. Here, we investigate a disordered XXZ spin chain in contact with a bath which, alone, would drive the system toward a highly delocalized and coherent Dicke state. We show that there exist regimes for which the natural orbitals of the single-particle density matrix of the steady state are all localized in the presence of strong disorders, for either weak interaction or strong interaction. We show that the averaged steady-state occupation in the eigenbasis of the open system Hamiltonian could follow an exponential decay for intermediate disorder strength in the presence of weak interactions, while it is more evenly spread for strong disorder or for stronger interactions. Last, we show that strong dissipation increases the coherence of the steady states, thus reducing the signatures of localization. We capture such signatures of localization also with a concatenated inverse participation ratio that simultaneously takes into account how localized are the eigenstates of the Hamiltonian and how close is the steady state to an incoherent mixture of different energy eigenstates.

2.
Phys Rev E ; 100(2-1): 022111, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574662

ABSTRACT

The use of two-site Lindblad dissipators to generate thermal states and study heat transport was raised to prominence by Prosen and Znidaric [J. Stat. Mech. (2009) P020351742-546810.1088/1742-5468/2009/02/P02035]. Here we propose a variant of this method based on detailed balance of internal levels of the two-site Hamiltonian and characterize its performance. We study the thermalization profile in the chain, the effective temperatures achieved by different single- and two-site observables, and we also investigate the decay of two-time correlations. We find that at a large enough temperature, the steady state approaches closely a thermal state, with a relative error below 1% for the inverse temperature estimated from different observables.

3.
Entropy (Basel) ; 21(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-33266943

ABSTRACT

We study the heat and spin transport properties in a ring of interacting spins coupled to heat baths at different temperatures. We show that interactions, by inducing avoided crossings, can be a means to tune both the total heat current flowing between the ring and the baths, and the way it flows through the system. In particular, we recognize three regimes in which the heat current flows clockwise, counterclockwise, and in parallel. The temperature bias between the baths also induces a spin current within the ring, whose direction and magnitude can be tuned by the interaction. Lastly, we show how the ergotropy of the nonequilibrium steady state can increase significantly near the avoided crossings.

SELECTION OF CITATIONS
SEARCH DETAIL
...