Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(44): 40446-40455, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385874

ABSTRACT

Currently, effects of nanomaterials and their ions, such as silver nanoparticles (Ag NPs) and silver ions (Ag+), on living organisms are not yet fully understood. One of the vital questions is whether nanomaterials have distinctive effects on living organisms from any other conventional chemicals (e.g., their ions), owing to their unique physicochemical properties. Due to various experimental protocols, studies of this crucial question have been inconclusive, which hinders rational design of effective regulatory guidelines for safely handling NPs. In this study, we chronically exposed early developing zebrafish embryos (cleavage-stage, 2 hours post-fertilization, hpf) to a dilution series of Ag+ (0-1.2 µM) in egg water (1 mM NaCl, solubility of Ag+ = 0.18 µM) until 120 hpf. We systematically investigated effects of Ag+ on developing embryos and compared them with our previous studies of effects of purified Ag NPs on developing embryos. We found the concentration- and time-dependent effects of Ag+ on embryonic development, and only half of the embryos developed normally after being exposed to 0.25 µM (27 µg/L) Ag+ until 120 hpf. As the Ag+ concentration increases, the number of embryos that developed normally decreases, while the number of embryos that became dead increases. The number of abnormally developing embryos increases as the Ag+ concentration increases from 0 to 0.3 µM and then decreases as the concentration increases from 0.3 to 1.2 µM because the number of embryos that became dead increases. The concentration-dependent phenotypes were observed, showing fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at low Ag+ concentrations (≤0.2 µM) and head and eye abnormalities along with fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at high concentrations (≥0.3 µM). Severities of phenotypes and the number of abnormally developing embryos were far less than those observed in Ag NPs. The results also show concentration-dependent effects on heart rates and hatching rates of developing embryos, attributing to the dose-dependent abnormally developing embryos. In summary, the results show that Ag+ and Ag NPs have distinctive toxic effects on early developing embryos, and toxic effects of Ag+ are far less severe than those of Ag NPs, which further demonstrates that the toxicity of Ag NPs toward embryonic development is attributed to the NPs themselves and their unique physicochemical properties but not the release of Ag+ from the Ag NPs.

2.
ACS Omega ; 5(3): 1625-1633, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32010837

ABSTRACT

Multidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against Bacillus subtilis. We functionalized 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm silver nanoparticles (Ag NPs) with a monolayer of 11-amino-1-undecanethiol and covalently linked them with antibiotics (ofloxacin, Oflx). The labeling ratios of antibiotics with NPs are 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We designed cell culture medium in which both BmrA and ΔBmrA cells grew and functioned normally while ensuring the stabilities of nanocarriers (nonaggregation). These approaches allow us to quantitatively study the dependence of their inhibitory effect against two isogenic strains of B. subtilis, WT (normal expression of BmrA) and ΔBmrA (deletion of bmrA), upon the NP size, antibiotic dose, and BmrA expression. Our results show that the inhibitory effects of nanocarriers highly depend on NP size and antibiotic dose. The same amount of Oflx on 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm nanocarriers shows the 3× lower, nearly the same, and 10× higher inhibitory effects than that of free Oflx, against both WT and ΔBmrA, respectively. Control experiments of the respective sized AgMUNH2 NPs (absence of Oflx) show insignificant inhibitory effects toward both strains. Taken together, the results show multiple factors, such as labeling ratios, multivalent effects, and pharmacodynamics (Oflx localization and distribution), which might play the roles in the size-dependent inhibitory effects on the growth of both WT and ΔBmrA strains. Interestingly, the inhibitory effects of nanocarriers are independent of the expression of BmrA, which could be attributed to the higher efflux of nanocarriers by other membrane transporters in both strains.

3.
Nanoscale Adv ; 2(5): 2135-2145, 2020 May 01.
Article in English | MEDLINE | ID: mdl-33791510

ABSTRACT

Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells, which causes multidrug resistance (MDR) and urgent need of new and more effective therapeutic agencies. In this study, we used three different sized antibiotic nanocarriers to study their mode of actions and their size-dependent inhibitory effects against Escherichia coli (E. coli). The antibiotic nanocarriers (AgMUNH-Oflx NPs) with 8.6×102, 9.4×103 and 6.5×105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing the Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer of 11-amino-1-undecanethiol (MUNH2) and covalently linking ofloxacin (Oflx) with the amine group of AgMUNH2 NPs, respectively. We designed a modified cell culture medium for nanocarriers to be stable (non-aggregated) over 18 h of cell culture, which enables us to quantitatively study their size and dose dependent inhibitory effects against E. coli. We found that inhibitory effects of Oflx against E. coli highly depend upon dose of Oflx and size of nanocarriers, showing that the equal amount of Oflx delivered by the largest nanocarriers (92.6 ± 4.4 nm) were the most potent with the lowest minimum inhibitory concentration (MIC50) and created the longest and highest percentage of filamentous cells, while the smallest nanocarriers (2.4 ± 0.7) were the least potent with the highest MIC50 and produced the shortest and lowest percentage of filamentous cells. Interestingly, the same amount of Oflx on 2.4 ± 0.7 nm nanocarriers showed the 2x higher MIC and created the 2x shorter filamentous cells than free Oflx, while the Oflx on 13.0 ± 3.1 and 92.6 ± 4.4 nm nanocarriers exhibited 2x and 6x lower MICs, and produced 2x and 3x longer filamentous cell than free Oflx, respectively. Notably, three sized AgMUNH2 NPs (absence of Oflx) showed negligible inhibitory effects and did not create filamentous cells. The results show that the filamentation of E. coli highly depends upon the sizes of nanocarriers, which leads to the size-dependent inhibitory effects of nanocarriers against E. coli.

4.
Analyst ; 143(7): 1599-1608, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29488517

ABSTRACT

ATP-binding cassette (ABC) membrane transporters serve as self-defense transport apparatus in many living organisms and they can selectively extrude a wide variety of substrates, leading to multidrug resistance (MDR). The detailed molecular mechanisms remain elusive. Single nanoparticle plasmonic spectroscopy highly depends upon their sizes, shapes, chemical and surface properties. In our previous studies, we have used the size-dependent plasmonic spectra of single silver nanoparticles (Ag NPs) to study the real-time efflux kinetics of the ABC (BmrA) transporter and MexAB-OprM transporter in single live cells (Gram-positive and Gram-negative bacterium), respectively. In this study, we prepared and used purified, biocompatible and stable (non-aggregated) gold nanoparticles (Au NPs) (12.4 ± 0.9 nm) to study the efflux kinetics of single BmrA membrane transporters of single live Bacillus subtillis cells, aiming to probe chemical dependent efflux functions of BmrA transporters and their potential chemical sensing capability. Similar to those observed using Ag NPs, accumulation of the intracellular Au NPs in single live cells (WT and ΔBmrA) highly depends upon the cellular expression of BmrA and the NP concentration (0.7 and 1.4 nM). The lower accumulation of intracellular Au NPs in WT (normal expression of BmrA) than ΔBmrA (deletion of bmrA) indicates that BmrA extrudes the Au NPs out of the WT cells. The accumulation of Au NPs in the cells increases with NP concentration, suggesting that the Au NPs most likely passively diffuse into the cells, similar to antibiotics. The result demonstrates that such small Au NPs can serve as imaging probes to study the efflux function of the BmrA membrane transporter in single live cells. Furthermore, the dependence of the accumulation rate of intracellular Au NPs in single live cells upon the expression of BmrA and the concentration of the NPs is about twice higher than that of the same sized Ag NPs. This interesting finding suggests the chemical-dependent efflux kinetics of BmrA and that BmrA could distinguish nearly identical sized Au NPs from Ag NPs and might possess chemical sensing machinery.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Gold , Metal Nanoparticles , Spectrum Analysis
5.
ACS Omega ; 3(1): 1231-1243, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29399654

ABSTRACT

Multidrug membrane transporters (efflux pumps) are responsible for multidrug resistance (MDR) and the low efficacy of therapeutic drugs. Noble metal nanoparticles (NPs) possess a high surface-area-to-volume ratio and size-dependent plasmonic optical properties, enabling them to serve both as imaging probes to study sized-dependent MDR and as potential drug carriers to circumvent MDR and enhance therapeutic efficacy. To this end, in this study, we synthesized three different sizes of silver nanoparticles (Ag NPs), 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm, functionalized their surface with a monolayer of 11-amino-1-undecanethiol (AUT), and covalently conjugated them with antibiotics (ofloxacin, Oflx) to prepare antibiotic drug nanocarriers with conjugation ratios of 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We purified and characterized the nanocarriers and developed cell culture medium in which the cells grew normally and the nanocarriers were stable (non-aggregated), to quantitatively study the size, dose, and efflux pump (MexAB-OprM) dependent inhibitory effect of the nanocarriers against two strains of Pseudomonas aeruginosa, WT (normal expression of MexAB-OprM) and ΔABM (deletion of MexAB-OprM). We found that the inhibitory effect of these nanocarriers highly depended on the sizes of NPs, the doses of antibiotic, and the expression of MexAB-OprM. The same amount of Oflx on the largest nanocarriers (92.6 ± 4.4 nm) showed the highest inhibitory effect (the lowest minimal inhibitory concentration) against P. aeruginosa. Surprisingly, the smallest nanocarriers (2.4 ± 0.7 nm) exhibited a lower inhibitory effect than free Oflx. The results suggest that size-dependent multivalent effects, the distribution and localization of Oflx (pharmacodynamics), and the efflux of Oflx all play a role in the inhibitory effects. Control experiments using three sizes of AgMUNH2 NPs (absence of Oflx) showed that these NPs do not exhibit any significant inhibitory activity toward both strains. These new findings demonstrate the need for and possibility of designing optimal sized antibiotic nanocarriers to achieve the highest efficacy against P. aeruginosa.

6.
RSC Adv ; 6(43): 36794-36802, 2016.
Article in English | MEDLINE | ID: mdl-27570617

ABSTRACT

ATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive. In this study, we synthesized and characterized purified silver nanoparticles (Ag NPs) (97 ± 13 nm in diameter), and used them as photostable optical imaging probes to study efflux kinetics of ABC membrane transporters (BmrA) of single live cells (B. subtillis). The NPs with concentrations up to 3.7 pM were stable (non-aggregated) in a PBS buffer and biocompatible with the cells. We found a high dependence of accumulation of the intracellular NPs in single live cells (WT, Ct-BmrA-EGFP, ΔbmrA) upon the cellular expression level of BmrA and NP concentration (0.93, 1.85 and 3.7 pM), showing the highest accumulation of intracellular NPs in ΔbmrA (deletion of BmrA) and the lowest ones in Ct-BmrA-EGFP (over-expression of BmrA). Interestingly, the accumulation of intracellular NPs in ΔbmrA increases nearly proportionally with the NP concentration, while those in WT and Ct-BrmA-EGFP do not. This suggests that the NPs enter the cells via passive diffusion driven by concentration gradients and are extruded out of cells by BmrA transporters, similar to conventional pump substrates (antibiotics). This study shows that such large substrates (84-100 nm NPs) can enter into the live cells and be extruded out of the cells by BmrA, and the NPs can serve as nm-sized optical imaging probes to study the size-dependent efflux kinetics of membrane transporters in single live cells in real time.

7.
J Phys Chem C Nanomater Interfaces ; 120(37): 21007-21016, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-29662596

ABSTRACT

Multidrug membrane transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, and they are responsible for ineffective treatment of a wide range of diseases (e.g., infection and cancer). Their underlying molecular mechanisms remain elusive. In this study, we functionalized Ag NPs (11 nm in diameter) with two biocompatible peptides (CALNNK, CALNNE) to prepare positively and negatively charged Ag-peptide NPs (Ag-CALNNK NPs+ζ, Ag-CALNNE NPs-4ζ), respectively. We used them as photostable plasmonic imaging probes to study charge-dependent efflux kinetics of BmrA (ABC) membrane transporter of single live Bacillus (B.) subtilis cells. Two strains of the cells, normal expression of BmrA (WT) or devoid of BmrA (ΔBmrA), were used to study the charge-dependent efflux kinetics of single NPs upon the expression of BmrA. The NPs (1.4 nM) were stable (non-aggregated) in a PBS buffer and biocompatible to the cells. We found the high dependent accumulation of the intracellular NPs in both WT and ΔBmrA upon the charge and concentration of NPs. Notably, the accumulation rates of the positively charged NPs in single live WT cells are nearly identical to those in ΔBmrA cells, showing independence upon the expression of BmrA. In contrast, the accumulation rates of the negatively charged NPs in WT are much lower than in ΔBmrA, showing high dependence upon the expression of BmrA and suggesting that BmrA extrude the negatively charged NPs, but not positively charged NPs, out of the WT. The accumulation of positively charged NPs in both WT and ΔBmrA increases nearly proportionally to the NP concentration. The accumulation of negatively charged NPs in ΔBmrA, but not in WT, also increases nearly proportionally to the NP concentration. These results suggest that both negatively and positively charged NPs enter the cells via passive diffusion driven by concentration gradients across the cellular membrane, and BmrA can only extrude the negatively charged NPs out of the WT. This study shows that single NP plasmon spectroscopy can serve as a powerful tool to identify single plasmonic NPs and to probe the charge-dependent efflux kinetics and function of single membrane transporters in single live cells in real time.

8.
Nanoscale ; 7(42): 17623-30, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26455449

ABSTRACT

Noble metal nanoparticles (NPs) possess unique plasmonic properties, enabling them to serve as sub-diffraction light sources and nano- antennae for a wide range of applications. Here we report the specific interaction of single Ag NPs with single EGFP molecules and a high dependence of their interaction upon localized-surface-plasmon-resonance (LSPR) spectra of single Ag NPs and EGFP. The LSPR spectra of single red Ag NPs show a stunning 60 nm blue-shift during their incubation with EGFP, whereas they remain unchanged during their incubation with bovine serum albumin (BSA). Interestingly, the peak wavelengths of the LSPR spectra of green and blue Ag NPs remain essentially unchanged during their incubation with either EGFP or BSA. These interesting findings suggest that plasmon-resonance-energy-transfer (PRET) from single Ag NPs to EGFP might follow a two-photon excitation mechanism to excite EGFP and the fluorescence of the excited EGFP might couple with the plasmon of single NPs leading to a blue-shift of the red NPs. These distinctive phenomena are only observed by real-time single NP spectroscopic measurements. This study offers exciting new opportunities to design new sensing and imaging tools with high specificity and sensitivity to study long-range molecular interactions and dynamic events in single live cells, and to probe the underlying molecular mechanisms of PRET.


Subject(s)
Green Fluorescent Proteins/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Cattle , Green Fluorescent Proteins/metabolism , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Surface Plasmon Resonance
9.
Analyst ; 139(12): 3088-96, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24781334

ABSTRACT

Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed a fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in the ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined its expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 µM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As the EtBr concentration increases to 40 µM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. The modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block the translocation pore or restrict the movement of the individual pump domains, which may lead to partially restricted efflux activity.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Green Fluorescent Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Spectrometry, Fluorescence/methods , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Base Sequence , DNA Primers , Green Fluorescent Proteins/genetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects
10.
Chem Res Toxicol ; 26(10): 1503-13, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24024906

ABSTRACT

Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs) (97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given stage embryos to the NPs (0-24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos to develop normally for cleavage, early gastrula, early segmentation, late segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage embryos. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing these Ag NPs with smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target-specific study and therapy for early embryonic development in size-, stage-, dose-, and exposure duration-dependent manners.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Metal Nanoparticles/toxicity , Silver/chemistry , Zebrafish/embryology , Animals , Female , Metal Nanoparticles/chemistry , Particle Size , Phenotype
11.
Nanoscale ; 5(23): 11625-36, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24056877

ABSTRACT

Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Diffusion , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiology , Embryonic Development/drug effects , Metal Nanoparticles/toxicity , Phenotype , Zebrafish/growth & development
12.
J Electroanal Chem (Lausanne) ; 688: 53-60, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23565071

ABSTRACT

Binding of a few ligand molecules with its receptors on cell surface can initiate cellular signaling transduction pathways, and trigger viral infection of host cells. HIV-1 infects host T-cells by binding its viral envelope protein (gp120) with its receptor (a glycoprotein, CD4) on T cells. Primary strategies to prevent and treat HIV infection is to develop therapies (e.g., neutralizing antibodies) that can block specific binding of CD4 with gp120. The infection often leads to the lower counts of CD4 cells, which makes it an effective biomarker to monitor the AIDS progression and treatment. Despite research over decades, quantitative assays for effective measurements of binding affinities of protein-protein (ligand-receptor, antigen-antibody) interactions remains highly sought. Solid-phase electrochemiluminescence (ECL) immunoassay has been commonly used to capture analytes from the solution for analysis, which involves immobilization of antibody on solid surfaces (micron-sized beads), but it cannot quantitatively measure binding affinities of molecular interactions. In this study, we have developed solution-phase ECL assay with a wide dynamic range (0-2 nM) and high sensitivity and specificity for quantitative analysis of CD4 at femtomolar level and their binding affinity with gp120 and monoclonal antibodies (MABs). We found that binding affinities of CD4 with gp120 and MAB (Q4120) are 9.5×108 and 1.2×109 M-1, respectively. The results also show that MAB (Q4120) of CD4 can completely block the binding of gp120 with CD4, while MAB (17b) of gp120 can only partially block their interaction. This study demonstrates that the solution-phase ECL assay can be used for ultrasensitive and quantitative analysis of binding affinities of protein-protein interactions in solution for better understating of protein functions and identification of effective therapies to block their interactions.

13.
Chem Res Toxicol ; 26(6): 904-17, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23621491

ABSTRACT

Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs(+ζ)), negatively (Ag-CALNNS NPs(-2ζ)), and more negatively charged NPs (Ag-CALNNE NPs(-4ζ)), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs(+ζ) (positively charged) are the most biocompatible while the Ag-CALNNE NPs(-4ζ) (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs.


Subject(s)
Embryo, Nonmammalian/drug effects , Metal Nanoparticles/toxicity , Peptides/chemistry , Silver/toxicity , Zebrafish/embryology , Animals , Embryo, Nonmammalian/abnormalities , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Optics and Photonics , Silver/chemistry , Spectrum Analysis , Static Electricity
14.
Interface Focus ; 3(3): 20120098, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-24427540

ABSTRACT

Noble metal nanoparticles (NPs) show distinctive plasmonic optical properties and superior photostability, enabling them to serve as photostable multi-coloured optical molecular probes and sensors for real-time in vivo imaging. To effectively study biological functions in vivo, it is essential that the NP probes are biocompatible and can be delivered into living organisms non-invasively. In this study, we have synthesized, purified and characterized stable (non-aggregated) gold (Au) NPs (86.2 ± 10.8 nm). We have developed dark-field single NP plasmonic microscopy and spectroscopy to study their transport into early developing zebrafish embryos (cleavage stage) and their effects on embryonic development in real-time at single NP resolution. We found that single Au NPs (75-97 nm) passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h). The majority of embryos (96 ± 3%) that were chronically incubated with the Au NPs (0-20 pM) for 120 h developed to normal zebrafish, while an insignificant percentage of embryos developed to deformed zebrafish (1 ± 1)% or dead (3 ± 3)%. Interestingly, we did not observe dose-dependent effects of the Au NPs (0-20 pM) on embryonic development. By comparing with our previous studies of smaller Au NPs (11.6 ± 0.9 nm) and similar-sized Ag NPs (95.4 ± 16.0 nm), we found that the larger Au NPs are more biocompatible than the smaller Au NPs, while the similar-sized Ag NPs are much more toxic than Au NPs. This study offers in vivo assays and single NP microscopy and spectroscopy to characterize the biocompatibility and toxicity of single NPs, and new insights into the rational design of more biocompatible plasmonic NP imaging probes.

15.
Analyst ; 137(13): 2973-86, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22563577

ABSTRACT

Nanomaterials exhibit distinctive physicochemical properties and promise a wide range of applications from nanotechnology to nanomedicine, which raise serious concerns about their potential environmental impacts on ecosystems. Unlike any conventional chemicals, nanomaterials are highly heterogeneous, and their properties can alter over time. These unique characteristics underscore the importance of study of their properties and effects on living organisms in real time at single nanoparticle (NP) resolution. Here we report the development of single-NP plasmonic microscopy and spectroscopy (dark-field optical microscopy and spectroscopy, DFOMS) and ultrasensitive in vivo assay (cleavage-stage zebrafish embryos, critical aquatic species) to study transport and toxicity of single silver nanoparticles (Ag NPs, 95.4 ± 16.0 nm) on embryonic developments. We synthesized and characterized purified and stable (non-aggregation) Ag NPs, determined their sizes and doses (number), and their transport mechanisms and effects on embryonic development in vivo in real time at single-NP resolution. We found that single Ag NPs passively entered the embryos through their chorionic pores via random Brownian diffusion and stayed inside the embryos throughout their entire development (120 h), suggesting that the embryos can bio-concentrate trace NPs from their environment. Our studies show that higher doses and larger sizes of Ag NPs cause higher toxic effects on embryonic development, demonstrating that the embryos can serve as ultrasensitive in vivo assays to screen biocompatibility and toxicity of the NPs and monitor their potential release into aquatic ecosystems.


Subject(s)
Embryo, Nonmammalian/drug effects , Nanoparticles , Spectrum Analysis/methods , Animals , Zebrafish/embryology
16.
Chem Res Toxicol ; 25(5): 1029-46, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22486336

ABSTRACT

Nanomaterials possess distinctive physicochemical properties (e.g., small sizes and high surface area-to-volume ratios) and promise a wide variety of applications, ranging from the design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advances in nanotechnology. In this study, we have synthesized and characterized purified and stable (nonaggregation) silver nanoparticles (Ag NPs, 41.6 ± 9.1 nm in average diameter) and utilized early developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe the diffusion and toxicity of Ag NPs. We found that single Ag NPs (30-72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose- and size-dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤0.02 nM), 75-91% of embryos developed into normal zebrafish. At the higher concentrations of NPs (≥0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02-0.2 nM), embryos developed into various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6 ± 3.5 nm), we found striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6 ± 9.1 nm) are more toxic than the smaller Ag NPs (11.6 ± 3.5 nm).


Subject(s)
Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Silver/toxicity , Zebrafish/embryology , Animals , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Particle Size
17.
Nanoscale ; 4(9): 2797-812, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22331098

ABSTRACT

Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.


Subject(s)
Nanotechnology , Signal Transduction , Animals , Biosensing Techniques , Cell Line , Metal Nanoparticles/chemistry , Mice , Molecular Imaging , Protein Binding , Receptors, Tumor Necrosis Factor, Type I/metabolism , Silver/chemistry , Tumor Necrosis Factor-alpha/metabolism
18.
Nanoscale ; 4(2): 380-5, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22117236

ABSTRACT

Electron beam lithography (EBL) has become a popular means to prepare a wide variety of nano-arrays for numerous studies and applications, including photonics and sensors. Their fabrications and characterizations are costly and time consuming, underscoring the importance of developing effective tools to rapidly study their physicochemical stabilities and properties over time. In this study, we characterized EBL-fabricated single silver nanoparticle (Ag NP) arrays over their 12-week exposure to ambient conditions using SEM/EDS, AFM and dark-field optical microscopy and spectroscopy (DFOMS). We found that chemical compositions, structural morphologies and plasmonic optical properties of single NPs altered drastically over the exposure. Single cuboid and triangular-prism Ag NPs degraded at rates of (0.74 ± 0.02) and (0.66 ± 0.02) per week, and their localized surface plasmon resonance (LSPR) spectra showed striking blue-shifts (171 ± 25 and 203 ± 35 nm) over the 12-week exposure, respectively. Plasmonic colors of single NPs changed distinctively from red to green over the 12-week exposure. The LSPR spectra of individual NPs in each array were acquired simultaneously and correlated specifically with their SEM and AFM images, demonstrating that DFOMS can serve as high-throughput, ultrasensitive and non-invasive means to characterize chemical, structural and optical properties of nano-arrays in situ in real time at single-NP resolution.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Silver/chemistry , Silver/radiation effects , Surface Plasmon Resonance/methods , Electrons , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Particle Size , Radiation Dosage , Surface Properties/radiation effects
19.
J Appl Phys ; 109(3): 34310, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21383872

ABSTRACT

Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in the peak wavelengths for square- and triangular-shaped NPs. The LSPR spectra of disk-shaped Ag NP pairs with varying interparticle distances were acquired from five different locations across the pair axis. It was clearly observed that the LSPR wavelength redshifts as the interparticle distance decreases, indicating a strong interaction when two Ag NPs are close to each other.

20.
Anal Bioanal Chem ; 400(1): 223-35, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21336797

ABSTRACT

We have designed and constructed fusion genes of C-terminal (Ct) or N-terminal (Nt) bmrA with EGFP vectors and successfully expressed them in ΔBmrA (BmrA deletion strain of Bacillus subtilis), generating two new strains of B. subtilis (Ct-BmrA-EGFP and Nt-BmrA-EGFP). The fusion genes were characterized using gel electrophoresis and DNA sequencing. Their expression in live cells was determined by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy and spectroscopy. The efflux function of the new strains was studied by measuring their accumulation kinetics of intracellular Hoechst dye molecules (a pump substrate) using fluorescence spectroscopy, which were compared with wild-type (WT-BmrA) and ΔBmrA strains. Both new strains show lower accumulation rates than ΔBmrA, and their efflux kinetics are inhibited by a pump inhibitor (orthovanadate). The results suggest that both strains extrude the dye molecules and the fusion proteins retain the efflux function of BmrA (ATP-binding cassette, ABC, transporter). Notably, Nt-BmrA-EGFP strain shows lower accumulation rates (higher efflux rates) than Ct-BmrA-EGFP. Modeled structures of the fusion proteins illustrate a highly flexible linker region connecting EGFP with BmrA, suggesting a minimal obstruction of EGFP to the BmrA. A closer distance of two C termini (~14 Å) than two N termini (47.9 Å) of the "closed" BmrA dimer depicts the larger steric effect of C-terminal fusion. This study also shows that glucose affects the fluorescence study of efflux function of BmrA, suggesting that efflux kinetics of ABC membrane transporters in live cells must be characterized in the absence of glucose.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Green Fluorescent Proteins/metabolism , Spectrometry, Fluorescence/methods , ATP-Binding Cassette Transporters/genetics , Bacillus subtilis/metabolism , Base Sequence , DNA Primers , Green Fluorescent Proteins/genetics , Kinetics , Molecular Probes , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...