Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744176

ABSTRACT

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Mesalamine , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Mesalamine/pharmacology , Mesalamine/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Humans , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Colon/immunology , Cells, Cultured , Male , Cell Proliferation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
2.
BMC Med Imaging ; 24(1): 126, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807064

ABSTRACT

BACKGROUND: Automated Breast Ultrasound (AB US) has shown good application value and prospects in breast disease screening and diagnosis. The aim of the study was to explore the ability of AB US to detect and diagnose mammographically Breast Imaging Reporting and Data System (BI-RADS) category 4 microcalcifications. METHODS: 575 pathologically confirmed mammographically BI-RADS category 4 microcalcifications from January 2017 to June 2021 were included. All patients also completed AB US examinations. Based on the final pathological results, analyzed and summarized the AB US image features, and compared the evaluation results with mammography, to explore the detection and diagnostic ability of AB US for these suspicious microcalcifications. RESULTS: 250 were finally confirmed as malignant and 325 were benign. Mammographic findings including microcalcifications morphology (61/80 with amorphous, coarse heterogeneous and fine pleomorphic, 13/14 with fine-linear or branching), calcification distribution (189/346 with grouped, 40/67 with linear and segmental), associated features (70/96 with asymmetric shadow), higher BI-RADS category with 4B (88/120) and 4 C (73/38) showed higher incidence in malignant lesions, and were the independent factors associated with malignant microcalcifications. 477 (477/575, 83.0%) microcalcifications were detected by AB US, including 223 malignant and 254 benign, with a significantly higher detection rate for malignant lesions (x2 = 12.20, P < 0.001). Logistic regression analysis showed microcalcifications with architectural distortion (odds ratio [OR] = 0.30, P = 0.014), with amorphous, coarse heterogeneous and fine pleomorphic morphology (OR = 3.15, P = 0.037), grouped (OR = 1.90, P = 0.017), liner and segmental distribution (OR = 8.93, P = 0.004) were the independent factors which could affect the detectability of AB US for microcalcifications. In AB US, malignant calcification was more frequent in a mass (104/154) or intraductal (20/32), and with ductal changes (30/41) or architectural distortion (58/68), especially with the both (12/12). BI-RADS category results also showed that AB US had higher sensitivity to malignant calcification than mammography (64.8% vs. 46.8%). CONCLUSIONS: AB US has good detectability for mammographically BI-RADS category 4 microcalcifications, especially for malignant lesions. Malignant calcification is more common in a mass and intraductal in AB US, and tend to associated with architectural distortion or duct changes. Also, AB US has higher sensitivity than mammography to malignant microcalcification, which is expected to become an effective supplementary examination method for breast microcalcifications, especially in dense breasts.


Subject(s)
Breast Neoplasms , Calcinosis , Ultrasonography, Mammary , Humans , Calcinosis/diagnostic imaging , Female , Retrospective Studies , Middle Aged , Ultrasonography, Mammary/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Aged , Mammography/methods , Aged, 80 and over
3.
Chin Med ; 19(1): 46, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468280

ABSTRACT

BACKGROUND: Stroke is a leading cause of mortality and disability with ischemic stroke being the most common type of stroke. Salvianolic acid C (SalC), a polyphenolic compound found in Salviae Miltiorrhizae Radix et Rhizoma, has demonstrated therapeutic potential in the recovery phase of ischemic stroke. However, its pharmacological effects and underlying mechanisms during the early stages of ischemic stroke remain unclear. This study aimed to examine the potential mechanism of action of SalC during the early phase of ischemic stroke using network pharmacology strategies and RNA sequencing analysis. METHODS: SalC effects on infarct volume, neurological deficits, and histopathological changes were assessed in a mouse model of transient middle cerebral artery occlusion (tMCAO). By integrating RNA sequencing data with a cerebral vascular disease (CVD)-related gene database, a cerebral ischemic disease (CID) network containing dysregulated genes from the tMCAO model was constructed. Network analysis algorithms were applied to evaluate the key nodes within the CID network. In vivo and in vitro validation of crucial targets within the identified pathways was conducted. RESULTS: SalC treatment significantly reduced infarct volume, improved neurological deficits, and reversed pathological changes in the tMCAO mouse model. The integration of RNA sequencing data revealed an 80% gene reversion rate induced by SalC within the CID network. Among the reverted genes, 53.1% exhibited reversion rates exceeding 50%, emphasizing the comprehensive rebalancing effect of SalC within the CID network. Neuroinflammatory-related pathways regulated by SalC, including the toll-like-receptor 4 (TLR4)- triggering receptor expressed on myeloid cells 1 (TREM1)-nuclear factor kappa B (NF-κB) pathway, were identified. Further in vivo and in vitro experiments confirmed that TLR4-TREM1-NF-κB pathway was down-regulated by SalC in microglia, which was essential for its anti-inflammatory effect on ischemic stroke. CONCLUSIONS: SalC attenuated cerebral ischemic injury by inhibiting neuroinflammation mediated by microglia, primarily through the TLR4-TREM1-NF-κB pathway. These findings provide valuable insights into the potential therapeutic benefits of SalC in ischemic stroke.

4.
Stem Cells ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469899

ABSTRACT

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where DKK1, an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 ng/ml to 100 ng/ml, while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/ml). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified CKAP4, another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway, and found that CKAP4-P/A suppressed DKK1 (100 ng/ml)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/ml) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathway in this process.

5.
Biomolecules ; 14(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397464

ABSTRACT

Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.


Subject(s)
Gene Expression Profiling , Plant Leaves , Osmotic Pressure , Plant Leaves/chemistry , Water/metabolism , Alkanes , Gene Expression Regulation, Plant
6.
BMJ Open ; 14(2): e079372, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38309762

ABSTRACT

INTRODUCTION: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates brain states by applying a weak electrical current to the brain cortex. Several studies have shown that anodal stimulation of the ipsilesional primary motor cortex (M1) may promote motor recovery of the affected upper limb in patients with stroke; however, a high-level clinical recommendation cannot be drawn in view of inconsistent findings. A priming brain stimulation protocol has been proposed to induce stable modulatory effects, in which an inhibitory stimulation is applied prior to excitatory stimulation to a brain area. Our recent work showed that priming theta burst magnetic stimulation demonstrated superior effects in improving upper limb motor function and neurophysiological outcomes. However, it remains unknown whether pairing a session of cathodal tDCS with a session of anodal tDCS will also capitalise on its therapeutic effects. METHODS AND ANALYSIS: This will be a two-arm double-blind randomised controlled trial involving 134 patients 1-6 months after stroke onset. Eligible participants will be randomly allocated to receive 10 sessions of priming tDCS+robotic training, or 10 sessions of non-priming tDCS+robotic training for 2 weeks. The primary outcome is the Fugl-Meyer Assessment-upper extremity, and the secondary outcomes are the Wolf Motor Function Test and Modified Barthel Index. The motor-evoked potentials, regional oxyhaemoglobin level and resting-state functional connectivity between the bilateral M1 will be acquired and analysed to investigate the effects of priming tDCS on neuroplasticity. ETHICS AND DISSEMINATION: The study has been approved by the Research Ethics Committee of the Shanghai Yangzhi Rehabilitation Center (reference number: Yangzhi2023-022) and will be conducted in accordance with the Declaration of Helsinki of 1964, as revised in 2013. TRIAL REGISTRATION NUMBER: ChiCTR2300074681.


Subject(s)
Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Stroke Rehabilitation/methods , Recovery of Function , China , Stroke/complications , Stroke/therapy , Upper Extremity , Treatment Outcome , Randomized Controlled Trials as Topic
7.
Small ; 20(23): e2308145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150646

ABSTRACT

Carbon fiber composites have great application prospects as a potential electromagnetic (EM) wave-absorbing material, yet it remains extremely challenging to integrate multiple functions of EM wave absorption, mechanical strength, thermal insulation, and flame retardancy. Herein, a novel carbon fiber reinforced C/SiOC aerogel (CF/CS) composite is successfully prepared by sol-gel impregnation combined with an ambient drying process for the first time. The density of the obtained CF/CS composites can be controlled just by changing sol-gel impregnation cycles (original carbon fiber felt (S0), and samples with one (S1) and two (S2) impregnation cycles are 0.249, 0.324, and 0.402 g cm-3, respectively), allowing for efficient tuning of their properties. Remarkably, S2 displays excellent microwave absorption properties, with an optimal reflection loss of -65.45 dB, which is significantly improved than S0 (-10.90 dB). Simultaneously, compared with S0 (0.75 and 0.30 MPa in the x/y and z directions), the mechanical performance of S2 is dramatically improved with a maximum compressive strength of 10.37 and 4.93 MPa in the x/y and z directions, respectively. Moreover, CF/CS composites show superior thermal insulation capability than S0 and obtain good flame-retardant properties. This work provides valuable guidance and inspiration for the development of multifunctional EM wave absorbers.

8.
PeerJ ; 11: e16013, 2023.
Article in English | MEDLINE | ID: mdl-37908414

ABSTRACT

Bovine diarrhea is a multi-factorial disease and remains one of the biggest health problems in animal husbandry. The endemic trends of the main pathogens responsible for bovine diarrhea in Inner Mongolia have not been analyzed systematically before. Therefore, the purpose of this study was to estimate the prevalence of bovine diarrhea pathogens found in the scattered households of Inner Mongolia in China. Additionally, we assessed for differences in the prevalence of infection based on age and region, as well as determined local prevalence rates and the rates of mixed infections. Using a two-stage random sampling strategy, 3,050 serum samples were collected from 72 bovine herds in 11 leagues and cities in Inner Mongolia, and the positive rates of BVDV, BRV, BCoV, K99, and Mycobacterium paratuberculosis (M. paratuberculosis) antibodies in the samples were detected by ELISA to determine the epidemic trends and epidemic differences of the five pathogens in Inner Mongolia. The positive rates of antibodies based on serum samples were: BVDV, 18.79% (95% CI [17.44-20.22]); BRV, 12.39% (95% CI [11.27-13.61]); BCoV, 12.82% (95% CI [11.68-14.05]); K99, 13.80% (95% CI [12.62-15.07]); and M. paratuberculosis, 10.79% (95% CI [9.74-11.94]). The prevalence rates of BRV, BCoV and K99 at 0-2 months were significantly different from that at 2-6 months, 6-18 months and adult cattle (P < 0.05). The prevalence of BVDV and M. paratuberculosis was the highest in adult cattle, which was significantly different from that in other age groups (P < 0.05). Furthermore, obvious regional epidemiological differences among the five diseases were observed. There was a mixed infection of BRV+BCoV in each age stage, the highest mixed infection being BVDV+BRV+K99 at 0-2 months of age. Our results showed that the cattle of scattered households in the Inner Mongolia of China were endemicly infected with several important cattle pathogens. Most of the pathogens studied occurred between 0-2 months of age and were mixed infections, which greatly influences the health of the cattle and leads to economic loss. These findings are of practical significance for the future prevention and control of bovine diarrhea in the Inner Mongolia or other regions of China.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Coinfection , Diarrhea Viruses, Bovine Viral , Paratuberculosis , Cattle , Animals , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Seroepidemiologic Studies , Antibodies, Viral , China/epidemiology , Diarrhea/epidemiology
10.
Stress Biol ; 3(1): 16, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37676530

ABSTRACT

Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.

11.
Front Pharmacol ; 14: 1232114, 2023.
Article in English | MEDLINE | ID: mdl-37731738

ABSTRACT

Aims: To summarize and clarify the current research status and indicate possible future directions in the field of autophagy in ischemic stroke, we performed a comprehensive and multidimensional bibliometric analysis of the literature in this field published from 2011 to 2022. Methods: We retrieved articles on the field of autophagy in ischemic stroke published between 2011 and 2022 from Web of Science Core Collection (WOSCC). VOSviewer (version 1.6.19) and CiteSpace (version 6.2.R2 Basic) were used to identify the leading topics as well as generate visual maps of Countries/regions, organizations, authors, journals, and keyword networks in the related field. Results: A total of 568 publications were contained in this research. The journal with the most publications were Front Pharmacol, Mol Neurobiol, and Neuroscience. China was the most productive country with respect to co-authorship, with the Capital Med Univ being the organization with the most. co-authorships. In terms of authorship analysis, eight of the top 10 most contributive authors were from China. The co-occurring author keywords can be divided into three main clusters, including "protective effect of autophagy in ischemic stroke," "autophagy-targeted therapy for ischemic stroke," and "mitochondrial function in cerebral ischemia-reperfusion injury". Conclusion: This bibliometric analysis helps us reveal the current research hotspots in the research field of autophagy in ischemic stroke and guide future research directions. Subsequent trends in this special field are likely to identify and develop novel autophagy-targeted therapy strategies to effectively prevent and treat ischemic stroke.

12.
Mol Oncol ; 17(12): 2584-2602, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37746742

ABSTRACT

Reticulocalbin-1 (RCN1) is expressed aberrantly and at a high level in various tumors, including acute myeloid leukemia (AML), yet its impact on AML remains unclear. In this study, we demonstrate that RCN1 knockdown significantly suppresses the viability of bone marrow mononuclear cells (BMMNCs) from AML patients but does not affect the viability of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSCs) from healthy donors in vitro. Downregulation of RCN1 also reduces the viability of AML cell lines. Further studies showed that the RCN1 knockdown upregulates type I interferon (IFN-1) expression and promotes AML cell pyroptosis through caspase-1 and gasdermin D (GSDMD) signaling. Deletion of the mouse Rcn1 gene inhibits the viability of mouse AML cell lines but not the hematopoiesis of mouse bone marrow. In addition, RCN1 downregulation in human AML cells significantly inhibited tumor growth in the NSG mouse xenograft model. Taken together, our results suggest that RCN1 may be a potential target for AML therapy.


Subject(s)
Leukemia, Myeloid, Acute , Pyroptosis , Humans , Animals , Mice , Down-Regulation/genetics , Pyroptosis/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Granulocyte Colony-Stimulating Factor/pharmacology , Signal Transduction
13.
Clin Immunol ; 253: 109685, 2023 08.
Article in English | MEDLINE | ID: mdl-37406980

ABSTRACT

Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.


Subject(s)
Cancer Vaccines , Melanoma , Metal Nanoparticles , Animals , Mice , Tumor Microenvironment , Interferon-gamma/metabolism , Gold/metabolism , Gold/pharmacology , CD8-Positive T-Lymphocytes , Adjuvants, Immunologic , Melanoma/metabolism , Lipids/pharmacology , Mice, Inbred C57BL
14.
Org Lett ; 25(26): 4886-4891, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37350627

ABSTRACT

Valuable piperidin-4-one derivatives were synthesized in excellent yields via an α-imino carbene-initiated cascade reaction involving 1,2-aryl/alkyl migration and annulation. The excellent selectivity of alkyl migration was attributed to the neighboring group participation of 2-bromoethyl. Features such as high efficiency, excellent migrating selectivity, broad substrate scope, and convenient one-pot procedure qualified this protocol as an effective tool for piperidine derivative synthesis. The product could be transformed to a bioactive molecule easily. The migration-annulation reaction of α-imino carbene provided a powerful strategy for heterocycle construction.

15.
Sci Rep ; 13(1): 10335, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365211

ABSTRACT

RNA editing is a post-transcriptional modification with a cell-specific manner and important biological implications. Although single-cell RNA-seq (scRNA-seq) is an effective method for studying cellular heterogeneity, it is difficult to detect and study RNA editing events from scRNA-seq data because of the low sequencing coverage. To overcome this, we develop a computational method to systematically identify RNA editing sites of cell types from scRNA-seq data. To demonstrate its effectiveness, we apply it to scRNA-seq data of human hematopoietic stem/progenitor cells (HSPCs) with an annotated lineage differentiation relationship according to previous research and study the impacts of RNA editing on hematopoiesis. The dynamic editing patterns reveal the relevance of RNA editing on different HSPCs. For example, four microRNA (miRNA) target sites on 3' UTR of EIF2AK2 are edited across all HSPC populations, which may abolish the miRNA-mediated inhibition of EIF2AK2. Elevated EIF2AK2 may thus activate the integrated stress response (ISR) pathway to initiate global translational attenuation as a protective mechanism to maintain cellular homeostasis during HSPCs' differentiation. Besides, our findings also indicate that RNA editing plays an essential role in the coordination of lineage commitment and self-renewal of hematopoietic stem cells (HSCs). Taken together, we demonstrate the capacity of scRNA-seq data to exploit RNA editing events of cell types, and find that RNA editing may exert multiple modules of regulation in hematopoietic processes.


Subject(s)
MicroRNAs , Single-Cell Gene Expression Analysis , Humans , Single-Cell Analysis/methods , MicroRNAs/genetics , Hematopoiesis/genetics , Cell Differentiation , Sequence Analysis, RNA/methods , 3' Untranslated Regions , Gene Expression Profiling/methods
16.
J Clin Ultrasound ; 51(6): 1039-1047, 2023.
Article in English | MEDLINE | ID: mdl-37096417

ABSTRACT

PURPOSE: To investigate the efficiency and impact factors of anatomical intelligence for breast (AI-Breast) and hand-held ultrasound (HHUS) in lesion detection. METHODS: A total of 172 outpatient women were randomly selected, underwent AI-Breast ultrasound (Group AI) once and HHUS twice. HHUS was performed by breast imaging radiologists (Group A) and general radiologists (Group B). For the AI-Breast examination, a trained technician performed the whole-breast scan and data acquisition, while other general radiologists performed image interpretation. The examination time and lesion detection rate were recorded. The impact factors for breast lesion detection, including breast cup size, number of lesions, and benign or malignant lesions were analyzed. RESULTS: The detection rates of Group AI, A, and B were 92.8 ± 17.0%, 95.0 ± 13.6%, and 85.0 ± 22.9%, respectively. Comparable lesion detection rates were observed in Group AI and Group A (P > 0.05), but a significantly lower lesion detection rate was observed in Group B compared to the other two (both P < 0.05). Regarding missed diagnosis rates of malignant lesions, comparable performance was observed in Group AI, Group A, and Group B (8% vs. 4% vs. 14%, all P > 0.05). Scan times of Groups AI, A, and B were 262.15 ± 40.4 s, 237.5 ± 110.3 s, 281.2 ± 86.1 s, respectively. The scan time of Group AI was significantly higher than Group A (P < 0.01), but was slightly lower than Group B (P > 0.05). We found a strong linear correlation between scan time and cup size in Group AI (r = 0.745). No impacts of cup size and number of lesions were found on the lesion detection rate in Group AI (P > 0.05). CONCLUSIONS: With the assist of AI-Breast system, the lesion detection rate of AI-Breast ultrasound was comparable to that of a breast imaging radiologist and superior to that of the general radiologist. AI-Breast ultrasound may be used as a potential approach for breast lesions surveillance.


Subject(s)
Breast Neoplasms , Image Interpretation, Computer-Assisted , Female , Humans , Sensitivity and Specificity , Image Interpretation, Computer-Assisted/methods , Breast/diagnostic imaging , Breast/pathology , Ultrasonography, Mammary/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
17.
Stem Cells ; 41(6): 628-642, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36951300

ABSTRACT

Migration of mesenchymal stem cells (MSCs) to the site of injury is crucial in transplantation therapy. Studies have shown that cell migration is regulated by the cellular microenvironment and accompanied by changes in cellular metabolism. However, limited information is available about the relationship between MSC migration and cellular metabolism. Here, we show that basic fibroblast growth factor (bFGF) promotes the migration of MSCs with high levels of glycolysis and high expression of hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. The enhancement of glycolysis via the activation of HK2 expression promoted the migration of MSCs, whereas the inhibition of glycolysis, but not of oxidative phosphorylation, inhibited the bFGF-induced migration of these cells. Furthermore, bFGF enhanced glycolysis by increasing HK2 expression, which consequently promoted ß-catenin accumulation, and the inhibition of glycolysis inhibited the bFGF-induced accumulation of ß-catenin. When the accumulation of glycolytic intermediates was altered, phosphoenolpyruvate was found to be directly involved in the regulation of ß-catenin expression and activation, suggesting that bFGF regulates ß-catenin signaling through glycolytic intermediates. Moreover, transplantation with HK2-overexpressing MSCs significantly improved the effect of cell therapy on skull injury in rats. In conclusion, we propose a novel glycolysis-dependent ß-catenin signaling regulatory mechanism and provide an experimental and theoretical basis for the clinical application of MSCs.


Subject(s)
Fibroblast Growth Factor 2 , Mesenchymal Stem Cells , Animals , Rats , beta Catenin/metabolism , Cell Movement , Fibroblast Growth Factor 2/metabolism , Glycolysis , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway
18.
Clin. transl. oncol. (Print) ; 25(3): 776-785, mar. 2023. graf
Article in English | IBECS | ID: ibc-216436

ABSTRACT

Background Cetuximab, a monoclonal antibody targeting epidermal growth factor receptor (EGFR), is effective for RAS wild-type metastatic colorectal cancer (mCRC) patients. However, cetuximab resistance often occur and the mechanism has not been fully elucidated. The purpose of this study was to investigate the role of asparaginyl endopeptidase (AEP) in cetuximab resistance. Methods Differentially expressed genes between cetuximab responders and non-responders were identified by analyzing the gene expression profile GSE5851, retrieved from Gene Expression Omnibus (GEO). The potential genes were further validated in cetuximab-resistant CRC cell lines. The expression of AEP in the peripheral blood and tumor tissues of mCRC patients in our hospital were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The survival analysis was carried out by Kaplan–Meier method. The function and associated pathways of AEP were further investigated by lentivirus transfection, CCK8 assay, colony formation assay, real-time polymerase chain reaction (qPCR) and western blot. Results Through bioinformatics analysis, we found that the expression of AEP gene was related to progress free survival (PFS) of mCRC patients treated with cetuximab alone (P = 0.00133). The expression of AEP was significantly higher in the cetuximab-resistant CRC cell lines, as well as in mCRC patients with shorter PFS treated with cetuximab-containing therapy. Furthermore, AEP could decrease the sensitivity of CRC cells to cetuximab in vitro. And the phosphorylation level of MEK and ERK1/2 was increased in AEP overexpression cells (AU)


Subject(s)
Humans , Cetuximab/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Colorectal Neoplasms/drug therapy , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Resistance, Neoplasm/genetics , Colorectal Neoplasms/genetics , ErbB Receptors/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Signal Transduction
19.
Nat Commun ; 14(1): 788, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774357

ABSTRACT

Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Humans , Female , Elasticity Imaging Techniques/methods , Breast Neoplasms/diagnostic imaging , Ultrasonography , Endosonography/methods , Diagnosis, Differential , Sensitivity and Specificity
20.
Clin Epigenetics ; 15(1): 26, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36803423

ABSTRACT

BACKGROUND: Early detection and prevention of precancerous lesions can significantly reduce the morbidity and mortality of colorectal cancer (CRC). Here, we developed new candidate CpG site biomarkers for CRC and evaluated the diagnostic value of their expression in blood and stool samples of CRC and precancerous lesions. METHODS: We analyzed 76 pairs of CRC and adjacent normal tissue samples, 348 stool samples, and 136 blood samples. Candidate biomarkers for CRC were screened using a bioinformatics database and identified using a quantitative methylation-specific PCR method. The methylation levels of the candidate biomarkers were validated using blood and stool samples. The divided stool samples were used to construct and validate a combined diagnostic model and to analyze the independent or combined diagnostic value of candidate biomarkers in stool samples of CRC and precancerous lesions. RESULTS: Two candidate CpG site biomarkers for CRC, cg13096260 and cg12993163, were identified. Although both biomarkers demonstrated diagnostic performance to a certain extent when using blood samples, they showed better diagnostic value for different stages of CRC and AA with stool samples. CONCLUSIONS: cg13096260 and cg12993163 detection in stool samples could be a promising approach for screening and early diagnosis of CRC and precancerous lesions.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Biomarkers, Tumor/analysis , Sensitivity and Specificity , Early Detection of Cancer/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...