Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(10): e2305502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880909

ABSTRACT

Biomass-based hydrogels have attracted great attention in flexible and sustainable self-powered power sources but struggled to fabricate in a green, high-efficiency, and low-cost manner. Herein, a novel and facile alkali-polyphenol synergetic self-catalysis system is originally employed for the fast gelation of self-healable and self-adhesive lignin-based conductive hydrogels, which can be regarded as hydrogel electrodes of flexible triboelectric nanogenerators (TENGs). This synergy self-catalytic system comprises aqueous alkali and polyphenol-containing lignin, in which alkali-activated ammonium persulfate (APS) significantly accelerates the generation of radicals and initiates the polymerization of monomers, while polyphenol acts as a stabilizer to avoid bursting polymerization from inherent radical scavenging ability. Furthermore, multiple hydrogen bonds between lignin biopolymers and polyacrylamide (PAM) chains impart lignin-based hydrogels with exceptional adhesiveness and self-healing properties. Intriguingly, the alkaline conditions not only contribute to the solubility of lignin but also impart superior ionic conductivity of lignin-based hydrogel that is applicable to flexible TENG in self-powered energy-saving stair light strips, which holds great promise for industrial applications of soft electronics.

2.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361895

ABSTRACT

Low temperatures are often used to preserve fruits and vegetables. However, low-temperature storage also causes problems, such as chilling injury, nitrite accumulation, and browning aggravation in plants. This study investigated the effects of brassinolide (BR,1.0 mg L-1) solution soaking, storage temperatures (-2 ± 0.5 °C, 4 ± 0.5 °C, and 20 ± 1 °C), and their combinations on nitrite content, color change, and quality of stored Toona sinensis bud. The results showed that low temperature (LT, 4 ± 0.5 °C) and near freezing-point temperature (NFPT, -2 ± 0.5 °C) storage effectively inhibited the decay of T. sinensis bud compared to room temperature (20 ± 1 °C, the control). The combined treatments of BR with LT or NFPT reduced nitrite content and maintained the color and the contents of vitamin C, carotenoids, saponins, ß-sitosterol, polyphenol, anthocyanin, flavonoids, and alkaloids in T. sinensis bud. BR soaking delayed the occurrence of chilling injury during NFPT storage. Meanwhile, BR soaking enhanced the DPPH radical scavenging activity, ABTS activity, and FRAP content by increasing SOD and POD activity and the contents of proline, soluble, and glutathione, thus decreasing MDA and hydrogen peroxide content and the rate of superoxide radical production in T. sinensis bud during NFPT storage. This study provides a valuable strategy for postharvest T. sinensis bud in LT and NFPT storage. BR soaking extended the shelf life during LT storage and maintained a better appearance and nutritional quality during NFPT storage.


Subject(s)
Nitrites , Toona , Temperature , Nitrites/pharmacology , Freezing , Fruit/chemistry
3.
Food Chem X ; 15: 100394, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211765

ABSTRACT

The rot and deterioration of sprouts are closely related to their physiological state and postharvest storage quality. The study investigated the influences of brassinolide, zeaxanthin, and their combination on physiological metabolism, chlorophyll fluorescence, and nutritional quality of radish sprouts stored at 4 °C. The combined treatments enhanced hypocotyl length, fresh weight, contents of secondary metabolites, nutritional ingredients, glutathione, the photoprotective capacity of PSII, and FRAP level in radish sprouts compared with zeaxanthin alone. The combined treatments enhanced hypocotyl length, fresh weight, glutathione content, Fv/Fm value, and antioxidant capacity in sprouts compared to brassinolide alone. The combined treatment of zeaxanthin and brassinolide could make radish sprouts keep high biomass and antioxidant capacity by increasing the contents of stress-resistant metabolites and by weakening the photoinhibition of PSII in radish sprouts stored at 4 °C.

4.
Front Plant Sci ; 12: 809769, 2021.
Article in English | MEDLINE | ID: mdl-35069668

ABSTRACT

The bulbil is the propagative organ of the P. ternata, which has a great effect on the yield of P. ternata. It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata. The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata, and decreased the ABA content in bulbil of P. ternata. Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata. BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata. These results provide molecular insight into BR regulation on bulbil formation and development.

SELECTION OF CITATIONS
SEARCH DETAIL
...