Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Chin J Nat Med ; 22(2): 161-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342568

ABSTRACT

Our continued works on the chemical constituents of Ginkgo biloba (G. biloba) leaves has led to the isolation of two novel phenylbutenoids (1, 2), along with five previously unidentified terpene glycosides (3-7). Among them, compounds 1 and 2 represent unique (Z)-phenylbutenoids, 3-6 are megastigmane glycosides, and 7 is identified as a rare bilobanone glycoside (Fig. 1). This study marks the first reported isolation of phenylbutenoid and bilobanone glycoside from G. biloba. The chemical structures of these compounds were elucidated through extensive spectroscopic analysis, including HR-ESI-MS and various 1D and 2D NMR experiments. Furthermore, the absolute configurations of these molecules were determined using Mosher's method, ECD experiments, and Cu-Kα X-ray crystallographic analyses.


Subject(s)
Cardiac Glycosides , Glycosides , Glycosides/chemistry , Ginkgo biloba/chemistry , Terpenes/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry
2.
Fitoterapia ; 173: 105832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280682

ABSTRACT

OBJECTIVE: The root of Ilex asprella (RIA) is a popular plant resource for treating inflammation-related diseases. The purpose of this study was to identify the secondary metabolites, to compare anti-inflammatory effects and to determine the quality marker components among root, stem and rhizome sections of IA. METHODS: Chemical fingerprints of stem, root and rhizome of IA was determined by high performance liquid chromatography (HPLC). A reliable method using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established for comprehensively determining the chemical constituents of the plants. Anti-inflammatory activities of IA and its ingredients were screened by in vivo mouse ear swelling and in vitro LPS-induced release of NO from RAW264.7 cells experiments. RESULTS: Root, stem and rhizome of IA have shown high similarity in chemical fingerprints. Totally 149 compounds were characterized in IA, including triterpenoids, triterpenoid saponins, phenolic acids and lignans. 44 of them were identified based on co-occurring Mass2Motifs, including 19 unreported ones, whilst 17 were tentatively confirmed by comparison with reference compounds. No significant anti-inflammatory activity difference among root, stem and rhizome parts of IA was found. Ilexsaponin B2, protocatechualdehyde, isochlorogenic acid B and quinic acid, were screened out as quality marker compounds in IA. CONCLUSION: A sensitive and rapid strategy was established to evaluate the differences on secondary metabolites of different parts of IA for the first time, and this study may contribute to the quality evaluation of medicinal herbs and provide theoretically data support for further analysis of different parts of IA.


Subject(s)
Ilex , Rhizome , Animals , Mice , Rhizome/chemistry , Ilex/chemistry , Chromatography, High Pressure Liquid/methods , Molecular Structure , Anti-Inflammatory Agents/pharmacology
3.
Biomed Pharmacother ; 170: 115679, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113632

ABSTRACT

Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Depression/metabolism , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Acetates/pharmacology , Stress, Psychological/metabolism
4.
J Cell Mol Med ; 28(3): e18058, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38098246

ABSTRACT

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Subject(s)
Astragalus Plant , Signal Transduction , Mice , Animals , Polysaccharides/pharmacology , Intestines , Stem Cells
5.
RSC Adv ; 13(46): 32778-32785, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37942447

ABSTRACT

Danggui Buxue Decoction (DBD), consisting of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (Huangqi, HQ) and Angelica sinensis (Oliv.) Diels (Danggui, DG), is a traditional Chinese medicine (TCM) formula with the function of tonifying Qi and promoting blood. In this study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to comprehensively identify the chemical constituents in DBD and those entering into the rat serum after gastric perfusion. A combination of the UNIFI platform and Global Natural Product Social molecular networking (GNPS) was used to analyze the chemical composition of DBD. As a result, 207 compounds were unambiguously or tentatively identified including 60 flavonoids, 38 saponins, 35 organic acids, 26 phthalides, 12 phenylpropanoids, 11 amino acids and 25 others. Furthermore, a total of 80 compounds, including 29 prototype components and 51 exogenous metabolites, were detected in the serum of rats. Phase I reactions (oxidation, reduction, and hydration), phase II reactions (methylation, sulfation, and glucuronidation), and their combinations were the main metabolic pathways of DBD. The results provided fundamental information for further studying the pharmacological mechanisms of DBD, as well as its quality control research.

6.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37816138

ABSTRACT

Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.


Subject(s)
Antineoplastic Agents , Neoplasms , Plants, Medicinal , Humans , Neoplasms/metabolism , Antineoplastic Agents/therapeutic use , T-Lymphocytes , Herbal Medicine , Tumor Microenvironment
7.
Front Pharmacol ; 14: 1178724, 2023.
Article in English | MEDLINE | ID: mdl-37601071

ABSTRACT

Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.

8.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37427974

ABSTRACT

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

9.
Mol Omics ; 19(8): 653-667, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37357557

ABSTRACT

Shexiang Baoxin Pill (SBP) has an excellent therapeutic effect on atherosclerosis (AS), but the combinational mechanisms of SBP against AS remain unclear. This study aimed to investigate the combinational mechanisms of SBP against AS by comprehensive network pharmacology and fecal metabolomic analysis. Bufonis venenum, one of the adjuvant medicines in SBP, is an animal medicine with a narrow therapeutic window. Considering animal protection, we evaluated the anti-AS effect of SBP without BV (SBP-BV) using ApoE-/- mouse models, culture cells, and metabolomic methods. Our data suggested that SBP showed remarkable anti-atherosclerotic effects through multiple targets and multiple pathways, while each component in SBP played different roles in their synergistic effect. Notably, SBP-BV showed comparable effects with SBP in the treatment of AS. Both SBP and SBP-BV could reduce cholesterol uptake in RAW264.7 cells and prevent the occurrence and development of AS in WD-induced ApoE-/- mice by attenuating the atherosclerotic plaque area, and reducing inflammatory cytokines and cholesterol levels in vivo. Our finding might provide new insights into the research and development of new anti-atherosclerosis drugs.


Subject(s)
Atherosclerosis , Network Pharmacology , Mice , Animals , Atherosclerosis/drug therapy , Penicillins , Cholesterol , Apolipoproteins E
10.
Biomed Pharmacother ; 163: 114862, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167729

ABSTRACT

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.


Subject(s)
Fatigue Syndrome, Chronic , Gastrointestinal Microbiome , Male , Animals , Mice , Fatigue Syndrome, Chronic/drug therapy , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
11.
Biomed Chromatogr ; 37(6): e5621, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895149

ABSTRACT

Cistanche tubulosa (CT), a well-known traditional Chinese medicine, has always been processed with rice wine for the treatment of kidney-yang deficiency syndrome (KYDS) since time immemorial. To explore the effect of processing on the efficacy and metabolites of CT in vivo, a comprehensive method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was established for the analysis of the altered endogenous metabolites in response to the intervention of the raw and processed CT in KYDS model and the metabolites of the absorbed compounds in rats after gastric perfusion. It was shown that CT could improve KYDS, and the effect of the processed product was more significant. A total of 47 differential metabolites were identified in urine. Pathway analysis proved that purine metabolism; alanine, aspartate, and glutamate metabolism; and citrate cycle were the main pathways. Furthermore, 53 prototypes and 48 metabolites have been detected in rats. This was the first systematic research focus on the metabolites of raw and processed CT in vivo, which could provide a scientific basis for explaining the increasing efficiency of the processed CT. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other TCM prescriptions.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Cistanche/metabolism , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Chromatography, Liquid
12.
Metabolites ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36837823

ABSTRACT

Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.

13.
Nat Prod Bioprospect ; 13(1): 6, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790599

ABSTRACT

Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.

14.
J Ethnopharmacol ; 305: 116092, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36587875

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan Shengmai capsule (DZSM) is a traditional herb medicine used by Dai, an ethnic-minority community living in Xishuang banna tropical rainforest in Southwest of China. It was originally intended to treat disorders caused by insufficient brain function, characterized by gibberish, unresponsiveness, or confusion. Accumulating clinical evidences exhibited that it is effective on treating ischemic stroke (IS). However, the action of DZSM against IS needs to be further elucidated. AIM OF THE STUDY: To investigate the effect of DZSM and its active components against IS and the way of its action by multi-omics and network pharmacology. MATERIALS AND METHODS: A middle cerebral artery occlusion/reperfusion (MCAO/R) rat model was established to investigate the effect of DZSM on the focal cerebral ischemia/reperfusion injury. An integrated strategy combining metabolomics, network pharmacology and transcriptomics was performed to systematically clarify the underlying mechanism of action of DZSM against IS. AutoDock Vina was applied to conduct molecular docking simulation for the binding between the potential active compounds and targets. Arachidonic acid (AA) induced platelet aggregation and lipopolysaccharide (LPS) stimulated microglial cells BV2 inflammation models were applied for the in vitro validation of effects of DZSM and its potential active compounds. RESULTS: In MCAO/R rats, DZSM could significantly reduce the infarct volume. Putative target prediction and functional enrichment analysis based on network pharmacological indicated that the key targets and the potential active compounds played important roles in DZSM's treatment to IS. The targets included four common genes (PTGS1, PTGS2, NFKB1 and NR1I2) and five key TFs (NFKB1, RELA, HIF1A, ESR1 and HDAC1), whilst 22 potential active compounds were identified. Molecular docking indicated that good binding affinity have been seen between those compounds and NR1I2, NFKB1, and RELA. Multi-omics study revealed that DZSM could regulate glutamate by influencing citrate cycle and glutamate involved pathways, and have showed neuroprotection activity and anti-inflammation activity by inhibiting NF-κB pathway. Neuroprotective effects of DZSM was validated by regulating of NF-κB signaling pathway and its downstream NO, TNF-α and IL-6 cytokines contributed to the activity of DZSM and its active compounds of scutellarin, quercetin 3-O-glucuronide, ginsenoside Rb1, schizandrol A and 3, 5-diCQA, whilst the antithrombotic activity of DZSM and its active compounds of schisanhenol, apigenin and schisantherin B were screened out by anti-platelet aggregation experiment. CONCLUSION: DZSM could against IS via regulating its downstream NO, TNF-α and IL-6 cytokines through NF-κB signaling pathway and alleviating thrombosis.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Thrombosis , Animals , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Interleukin-6 , Ischemic Stroke/drug therapy , Molecular Docking Simulation , Multiomics , Network Pharmacology , NF-kappa B/metabolism , Pregnane X Receptor , Thrombosis/drug therapy , Tumor Necrosis Factor-alpha
15.
Ecotoxicol Environ Saf ; 248: 114341, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36442401

ABSTRACT

Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Intestines
16.
Front Pharmacol ; 13: 990476, 2022.
Article in English | MEDLINE | ID: mdl-36188559

ABSTRACT

Atherosclerosis (AS) and the accompanied cardiovascular diseases (CVDs) were the leading cause of death worldwide. Recently, the association between CVDs, gut microbiota, and metabolites had aroused increasing attention. In the study, we headed our investigation into the underlying mechanism of ginsenoside Rc (GRc), an active ingredient of ginsenosides used for the treatment of CVDs, in apolipoprotein E-deficient (ApoE-/-) mice with high-fat diet (HFD). Seven-week-old male ApoE-/- mice were randomly divided into four groups: the normal control (NC) group, the HFD group, the GRc group (40 mg/kg/d), and the atorvastatin (Ato) group (10 mg/kg/d). Atherosclerotic injury was evaluated by aortic lesions, serum lipid levels, and inflammatory factors. The composition of gut microbiota and fecal metabolite profile were analyzed using 16S rRNA sequence and untargeted metabolomics, respectively. The results showed that GRc significantly alleviated HFD-induced aortic lesions, reduced serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and IL-1ß, and increased high-density lipoprotein cholesterol (HFD-C) level, as well as the alteration of gut microbiota composition, function, and metabolite profile. GRc also reversed HFD change of Bacteroidetes and Firmicutes at the phylum level, Muribaculaceae, Lactobacillus, Ileibacterium, Bifidobacterium, Faecalibaculum, Oscillibacter, Blautia, and Eubacterium_coprostanoligenes_group at the genus level, and 23 key metabolites involved in taurine and hypotaurine metabolism, arginine biosynthesis, ATP-binding cassette (ABC) transporters, primary bile acid biosynthesis, purine metabolism, tricarboxylic acid (TCA) cycle, and glucagon signaling pathways. Additionally, eight differential intestinal floras at the genus level were associated with 23 key differential metabolites involving atherosclerotic injury. In conclusion, our results demonstrated that GRc ameliorated atherosclerotic injury, regulated microbial and metabolomic changes in HFD-induced ApoE-/- mice, and suggested a potential correlation among gut microbiota, metabolites, and atherosclerotic injury regarding the mechanisms of GRc against AS.

17.
Metabolites ; 12(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36144234

ABSTRACT

Euphorbiasteroid, a lathyrane-type diterpene from Euphorbiae semen (the seeds of Euphorbia lathyris L.), has been shown to have a variety of pharmacological effects such as anti-tumor and anti-obesity. This study aims to investigate the metabolic profiles of euphorbiasteroid in rats and rat liver microsomes (RLMs) and Cunninghamella elegans bio-110930 by integrating ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS), UNIFI software, and NMR techniques. A total of 31 metabolites were identified in rats. Twelve metabolites (M1-M5, M8, M12-M13, M16, M24-M25, and M29) were matched to the metabolites obtained by RLMs incubation and the microbial transformation of C. elegans bio-110930 and their structures were exactly determined through analysis of NMR spectroscopic data. In addition, the metabolic pathways of euphorbiasteroid were then clarified, mainly including hydroxylation, hydrolysis, oxygenation, sulfonation, and glycosylation. Finally, three metabolites, M3 (20-hydroxyl euphorbiasteroid), M24 (epoxylathyrol) and M25 (15-deacetyl euphorbiasteroid), showed significant cytotoxicity against four human cell lines with IC50 values from 3.60 µM to 40.74 µM. This is the first systematic investigation into the in vivo metabolic pathways of euphorbiasteroid and the cytotoxicity of its metabolites, which will be beneficial for better predicting the metabolism profile of euphorbiasteroid in humans and understanding its possible toxic material basis.

18.
J Ethnopharmacol ; 295: 115442, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35688255

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dingkun Pill (DKP), a traditional Chinese medicine prescription, was modified from Bujing decoction and Xusijiangsheng pill by the imperial physician in the Qing dynasty (1700' s). It was believed to treat various gynecological diseases by nourishing qi and blood. Accumulating evidence indicates that it is effective in treating polycystic ovary syndrome (PCOS). However, the therapeutic efficacy and mechanism of action DKP against PCOS need to be further elucidated. AIM OF THE STUDY: To investigate the therapeutic effect and action mechanism of DKP against PCOS using an integrated approach of metabolomics and network pharmacology. MATERIALS AND METHODS: The rat model of PCOS was established by dehydroepiandrosterone. An integrated metabolomics and network pharmacology strategy was applied to systemically clarify the mechanism of DKP against PCOS. Theca cells were prepared to evaluate the effect of DKP and its ingredients on testosterone synthesis in vitro. RESULTS: The pharmacological experiments demonstrated that DKP could effectively convert the disordered estrous cyclicity, decrease the level of testosterone and the luteinizing hormone/follicle stimulating hormone ratio, and inhibit abnormal follicle formation in PCOS rats. By metabolomics analysis, 164 serum endogenous differential metabolites and 172 urine endogenous differential metabolites were tentatively identified. Steroid hormone biosynthesis and ovarian steroidogenesis were the most significantly impacted pathways. Based on network pharmacology and metabolomics studies, the ingredient-target-pathway network of DKP in the treatment of PCOS was constructed. Among the 10 key targets, CYP17A1, CYP19A1, STS, AR, ESR1, and MYC were closely involved in ovarian androgen synthesis. In theca cell-based assay of testosterone synthesis, DKP and its two active compounds (ligustilide and picrocrocin) showed inhibitory effects. CONCLUSION: DKP effectively improved symptoms in rats with dehydroepiandrosterone-induced PCOS. The mechanism of DKP in the treatment of PCOS is related to the CYP17A1 enzyme required for androgen synthesis.


Subject(s)
Polycystic Ovary Syndrome , Androgens , Animals , Dehydroepiandrosterone/therapeutic use , Female , Humans , Metabolomics , Network Pharmacology , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Rats , Testosterone/therapeutic use
19.
Fitoterapia ; 161: 105234, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35705133

ABSTRACT

As our ongoing interest to search bioactive dimeric sesquiterpenes from the genus Vladimiria (Asteraceae), the plant of Vladimiria souliei was studied. Based on the repetitive chromatographic fractionation, a chemical investigation on the roots of Vladimiria souliei led to the isolation and the identification of four previously undescribed sesquiterpene dimers, vlasouliodes A-D (1-4). Their chemical structures were elucidated by comprehensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR spectroscopic data. The absolute configurations of them were unambiguously established by the experimental and calculated ECD data. In the in vitro biological activity evaluation, 1 and 3 displayed pronounced inhibitory activity against human breast adenocarcinoma cell lines (MCF-7) with IC50 values of 17.12 ± 0.42 µM and 13.12 ± 0.10 µM, respectively. Additionally, treatment with 1 and 3 induced cell apoptosis in MCF-7 cells, down-regulated the expression of Caspase-3 and up-regulated the expression of Cleaved-caspase-3.


Subject(s)
Asteraceae , Sesquiterpenes , Asteraceae/chemistry , Caspase 3 , Humans , MCF-7 Cells , Molecular Structure , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
20.
Chem Biodivers ; 19(3): e202101013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35229460

ABSTRACT

Three new monoterpene alkaloids, delavatines C-E (1-3), along with five known ones (4-8), were separated from the whole plants of Incarvillea delavayi. All compounds were deduced by interpretation of comprehensive NMR spectral data and X-Ray single crystal diffraction, in combination with a quantum chemical calculation of NMR chemical shift coupled with an advanced statistical procedure DP4+. Compounds 1-8 were assessed NO suppressive effect in LPS-stimulated BV2 microglia cells. Compounds 2, 3, 6, and 8 exhibited significant inhibition against NO production in LPS-induced BV2 cells with IC50 values of 25.62, 17.29, 19.94 and 23.88 µM, stronger than or comparable to the positive control (AG) with IC50 value of 26.13 µM.


Subject(s)
Alkaloids , Bignoniaceae , Alkaloids/pharmacology , Bignoniaceae/chemistry , Lipopolysaccharides/pharmacology , Microglia , Monoterpenes/pharmacology , Nitric Oxide
SELECTION OF CITATIONS
SEARCH DETAIL
...