Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Med ; 23(8): 815-824, 2023.
Article in English | MEDLINE | ID: mdl-36017862

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus have a high cardiovascular risk due, in part, to abnormalities of high-density lipoprotein mediated cholesterol efflux. The ATP-binding cassette A1 and G1 play a pivotal role in the regulation of cholesterol efflux. However, the regulation of these transporters in type 2 diabetes mellitus remains obscure. OBJECTIVES: This study aimed to investigate the expression of ATP-binding cassette A1 and G1 and their regulation by Liver X receptors in monocyte-derived macrophages in type 2 diabetes mellitus, and to determine whether the alteration of these transporters might affect cholesterol efflux from macrophages. METHODS: Blood was collected from type 2 diabetic patients and healthy controls. Peripheral monocytes were differentiated into macrophages. Quantitative real-time PCR, western blots, and cholesterol efflux assays were performed. The Liver X receptor and Liver X receptor element complex in the ATP-binding cassette G1 gene promoter were detected by electrophoretic mobility supershift assay. RESULTS: Macrophage ATP-binding cassette G1 expression and high density lipoproteininduced cholesterol efflux were significantly reduced in type 2 diabetic patients. However, the mRNA expression of ATP-binding cassette G1 in type 2 diabetic patients was not inhibited by Liver X receptor siRNA and the Liver X receptor- Liver X receptor element complexes remain unchanged similarly. CONCLUSION: The study suggested that the expression of ATP-binding cassette G1 and high density lipoprotein-induced cholesterol efflux in macrophages were reduced in type 2 diabetes mellitus. Impairment of cholesterol efflux and ATP-binding cassette G1 gene expression in type 2 diabetes mellitus might be regulated by a Liver X receptorindependent pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Cholesterol/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Adenosine Triphosphate , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...