Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474997

ABSTRACT

The accuracy of ultrasonic flowmeter time delay measurement is directly affected by the processing method of the ultrasonic echo signal. This paper proposes a method for estimating the time delay of the ultrasonic gas flowmeter based on the Variational Mode Decomposition (VMD)-Hilbert Spectrum and Cross-Correlation (CC). The method improves the accuracy of the ultrasonic gas flowmeter by enhancing the quality of the echo signal. To denoise forward and reverse ultrasonic echo signals collected at various wind speeds, a Butterworth filter is initially used. The ultrasonic echo signals are then analyzed by Empirical Mode De-composition (EMD) and VMD analysis to obtain the Intrinsic Mode Function (IMF) containing distinct center frequencies, respectively. The Hilbert spectrum time-frequency diagram is used to evaluate the results of the VMD and EMD decompositions. It is found that the IMF decomposed by VMD has a better filtering performance and better anti-interference performance. Therefore, the IMF with a better effect is selected for signal reconstruction. The ultrasonic time delay is then calculated using the Cross-Correlation algorithm. The self-developed ultrasonic gas flowmeter was tested on the experimental platform of the gas flow standard devices using this signal processing method. The results show a maximum indication error of 0.84% within the flow range of 60-606 m3/h, with a repeatability of no more than 0.29%. These results meet the 1-level accuracy requirements as outlined in the national ultrasonic flowmeters calibration regulation JJG1030-2007.

2.
Micromachines (Basel) ; 14(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004877

ABSTRACT

An air-coupled transducer was developed in this study, utilizing hollow glass microsphere-organosilicon composites as an acoustically matching layer, which demonstrated outstanding acoustic performance. Firstly, a comparison and analysis of the properties and advantages of different substrates was carried out to determine the potential application value of organosilicon substrates. Immediately after, the effect of hollow glass microspheres with different particle sizes and mass fractions on the acoustic properties of the matching layer was analyzed. It also evaluated the mechanical properties of the matching layer before and after optimization. The findings indicate that the optimized composite material attained a characteristic acoustic impedance of 1.04 MRayl and an acoustic attenuation of 0.43 dB/mm, displaying exceptional acoustic performance. After encapsulating the ultrasonic transducer using a 3D-printed shell, we analyzed and compared its emission and reception characteristics to the commercial transducer and found that its emission acoustic pressure amplitude and reception voltage amplitude were 34% and 26% higher, respectively. Finally, the transducer was installed onto a homemade ultrasonic flow meter for practical application verification, resulting in an accuracy rate of 97.4%.

3.
J Environ Sci (China) ; 17(6): 926-9, 2005.
Article in English | MEDLINE | ID: mdl-16465879

ABSTRACT

Ozonlysis in the treatment of p-nitrophenol solution was studied in this paper. The results indicated that the decomposition of p-nitrophenol was accelerated as the gas flow rate or pH value increased. When gaseous ozone concentration was 20.11 mg/L and pH was 3, after 24 min reaction, the removal rate of p-nitrophenol reached 73.04%, 86.11%, 91.71% and 95% at the gas flow rate of 32, 40, 48 and 56 ml/min respectively. And when pH was 3, 4, 5, 6, the decomposition rate was 66.38%, 82.09%, 90.46%, 97.50% after a 20 min reaction respectively. It was mainly O3 molecule that took part in the decomposition when pH was 3. The main intermediates during the decomposition include catechol, o-benzoquinone, hydroquinone, p-benzoquinone, phenol, fumaric acid, maleic acid, oxalic acid and formic acid. The decomposition mechanism of p-nitrophenol was also discussed.


Subject(s)
Nitrophenols/chemistry , Ozone/chemistry , Water Pollutants, Chemical , Water Purification/methods , Chromatography, High Pressure Liquid , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...