Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Precis Chem ; 2(2): 81-87, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425747

ABSTRACT

On-surface synthesis has emerged as a powerful strategy to fabricate unprecedented forms of atomically precise graphene nanoribbons (GNRs). However, the on-surface synthesis of zigzag GNRs (ZGNR) has met with only limited success. Herein, we report the synthesis and on-surface reactions of 2,7-dibromo-9,9'-bianthryl as the precursor toward π-extended ZGNRs. Characterization by scanning tunneling microscopy and high-resolution noncontact atomic force microscopy clearly demonstrated the formation of anthracene-fused ZGNRs. Unique skeletal rearrangements were also observed, which could be explained by intramolecular Diels-Alder cycloaddition. Theoretical calculations of the electronic properties of the anthracene-fused ZGNRs revealed spin-polarized edge-states and a narrow bandgap of 0.20 eV.

2.
Adv Mater ; 35(48): e2306311, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37795919

ABSTRACT

Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge-extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance-a 3-zigzag-rows-wide ZGNR-with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge-extended 3-ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge-extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure-dependent electronic properties.

3.
Adv Mater ; 35(21): e2300169, 2023 May.
Article in English | MEDLINE | ID: mdl-36884267

ABSTRACT

Further enhancing the operational lifetime of inverted-structure perovskite solar cells (PSCs) is crucial for their commercialization, and the design of hole-selective contacts at the illumination side plays a key role in operational stability. In this work, the self-anchoring benzo[rst]pentaphene (SA-BPP) is developed as a new type of hole-selective contact toward long-term operationally stable inverted PSCs. The SA-BPP molecule with a graphene-like conjugated structure shows a higher photostability and mobility than that of the frequently-used triphenylamine and carbazole-based hole-selective molecules. Besides, the anchoring groups of SA-BPP promote the formation of a large-scale uniform hole contact on ITO substrate and efficiently passivate the perovskite absorbers. Benefiting from these merits, the champion efficiencies of 22.03% for the small-sized cells and 17.08% for 5 × 5 cm2 solar modules on an aperture area of 22.4 cm2 are achieved based on this SA-BPP contact. Also, the SA-BPP-based device exhibits promising operational stability, with an efficiency retention of 87.4% after 2000 h continuous operation at the maximum power point under simulated 1-sun illumination, which indicates an estimated T80 lifetime of 3175 h. This novel design concept of hole-selective contacts provides a promising strategy for further improving the PSC stability.

4.
Angew Chem Int Ed Engl ; 62(24): e202302534, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36929312

ABSTRACT

Graphene nanoribbons (GNRs) and nanographenes synthesized by on-surface reactions using tailor-made molecular precursors offer an ideal playground for a study of magnetism towards nano-spintronics. Although the zigzag edge of GNRs has been known to host magnetism, the underlying metal substrates usually veil the edge-induced Kondo effect. Here, we report the on-surface synthesis of unprecedented, π-extended 7-armchair GNRs using 7-bromo-12-(10-bromoanthracen-9-yl)tetraphene as the precursor. Characterization by scanning tunneling microscopy/spectroscopy revealed unique rearrangement reactions leading to pentagon- or pentagon/heptagon-incorporated, nonplanar zigzag termini, which demonstrated Kondo resonances even on bare Au(111). Density functional theory calculations indicate that the nonplanar structure significantly reduces the interaction between the zigzag terminus and the Au(111) surface, leading to a recovery of the spin localization of the zigzag edge. Such a distortion of planar GNR structures offers a degree of freedom to control the magnetism on metal substrates.

5.
Angew Chem Int Ed Engl ; 62(18): e202218494, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36861254

ABSTRACT

Double helicenes are appealing chiral frameworks. Their π-extension is desirable to achieve (chir)optical response in the visible and near-infrared (NIR) region, but access to higher double [n]helicenes (n≥8) has remained challenging. Herein, we report an unprecedented π-extended double [9]helicene (D9H), unambiguously revealing its structure by single-crystal X-ray diffraction. D9H shows remarkable NIR emission from 750 to 1100 nm with a high photoluminescence quantum yield of 18 %. In addition, optically pure D9H exhibits panchromatic circular dichroism with a notable dissymmetry factor (gCD ) of 0.019 at 590 nm, which is among the highest in the visible region for reported helicenes.

6.
Angew Chem Int Ed Engl ; 62(14): e202218350, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36727244

ABSTRACT

We report the synthesis of a hexabenzoperihexacene (HBPH) with two incorporated octacene substructures, which was unambiguously characterized by single-crystal X-ray analysis. The theoretical isomerization barrier of the (P,P)-/(P,M)-forms was estimated to be 38.4 kcal mol-1 , and resolution was achieved by chiral HPLC. Notably, the enantiomers exhibited opposite circular dichroism responses up to the near-infrared (NIR) region (830 nm) with a high gabs value of 0.017 at 616 nm. Moreover, HBPH demonstrated NIR emission with a maximum at 798 nm and an absolute PLQY of 41 %. The excited-state photophysical properties of HBPH were investigated by ultrafast transient absorption spectroscopy, revealing an intriguing feature that was attributed to the rotational and/or conformational dynamics of HBPH after excitation. These results provide new insight into the design of chiral nanographene with NIR optical properties for potential chiroptical applications.

7.
J Am Chem Soc ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36780241

ABSTRACT

We report in situ generation of a 6,6'-biindeno[1,2-b]anthracene (BIA) derivative as an open-shell biaryl with high diradical character, which could be identified by mass spectrometry, NMR spectroscopy, single-crystal X-ray analysis, UV-vis-NIR absorption spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. Theoretical calculations by various methods and variable-temperature EPR analyses were performed to tackle the elusive ground state of BIA diradical, suggesting a singlet ground state with a nearly degenerate triplet state. These results provide insight into the design of unique open-shell biaryls.

8.
Chem Commun (Camb) ; 59(6): 720-723, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541159

ABSTRACT

A benzo[rst]pentaphene (BPP) substituted by two bis(methoxyphenyl)amino (MeOPA) groups (BPP-MeOPA) was synthesized and clearly characterized by NMR and single-crystal X-ray analysis. Detailed investigations of its photophysical properties, including transient absorption spectroscopy analyses, revealed that the introduction of the MeOPA groups breaks the symmetry of the BPP core, improving its absorption and emission from an S1 state with both excitonic and charge-transfer character.


Subject(s)
Nitrous Oxide , Solvents/chemistry , Magnetic Resonance Spectroscopy
9.
Chem Sci ; 13(44): 13040-13045, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36425485

ABSTRACT

We report the synthesis of a dibenzodinaphthocoronene (DBDNC) derivative as a novel nanographene with armchair, zigzag, and fjord edges, which was characterized by NMR and X-ray crystallography as well as infrared (IR) and Raman spectroscopies. Ultrafast transient absorption (TA) spectroscopy revealed the presence of stimulated emission signals at 655 nm and 710 nm with a relatively long lifetime, which resulted in dual amplified spontaneous emission (ASE) bands under ns-pulsed excitation, indicating the promise of DBNDC as a near-infrared (NIR) fluorophore for photonics. Our results provide new insight into the design of nanographene with intriguing optical properties by incorporating fjord edges.

10.
Adv Sci (Weinh) ; 9(19): e2200004, 2022 07.
Article in English | MEDLINE | ID: mdl-35156332

ABSTRACT

Exploration of novel biaryls consisting of two polycyclic aromatic hydrocarbon (PAH) units can be an important strategy toward further developments of organic materials with unique properties. In this study, 5,5'-bibenzo[rst]pentaphene (BBPP) with two benzo[rst]pentaphene (BPP) units is synthesized in an efficient and versatile approach, and its structure is unambiguously elucidated by X-ray crystallography. BBPP exhibits axial chirality, and the (M)- and (P)-enantiomers are resolved by chiral high-performance liquid chromatography and studied by circular dichroism spectroscopy. These enantiomers have a relatively high isomerization barrier of 43.6 kcal mol-1 calculated by density functional theory. The monomer BPP and dimer BBPP are characterized by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The results indicate that both BPP and BBPP fluoresce from a formally dark S1 electronic state that is enabled by Herzberg-Teller intensity borrowing from a neighboring bright S2 state. While BPP exhibits a relatively low photoluminescence quantum yield (PLQY), BBPP exhibits a significantly enhanced PLQY due to a greater S2 intensity borrowing. Moreover, symmetry-breaking charge transfer in BBPP is demonstrated by spectroscopic investigations in solvents of different polarity. This suggests high potential for singlet fission in such π-extended biaryls through appropriate molecular design.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Crystallography, X-Ray , Polycyclic Aromatic Hydrocarbons/chemistry , Solvents
11.
Small ; 18(1): e2105365, 2022 01.
Article in English | MEDLINE | ID: mdl-34741415

ABSTRACT

Helicene-based therapeutic agents for organelle-targeted photodynamic therapy (PDT) involving both type I and II are challenging and still underexplored. Herein, water-soluble nanoparticles containing twisted double [7]carbohelicene (D7H-NPs) are prepared through self-assembly with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] by a nanoprecipitation method. D7H-NPs display high water solubility with an average size of 46 ± 2 nm. Notably, D7H-NPs can generate efficient singlet oxygen (1 O2 ) and superoxide anion (O2· - ) upon white light irradiation, forming the basis of PDT. Moreover, the typical accumulation in lysosomes of 4T1 cancer cells paves the way to use D7H-NPs for lysosome-targeted cancer phototherapeutics. This paper reports a promising helicene-based phototherapeutic agent involving both type I and II PDT for organelle-targeted biotherapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Cell Line, Tumor , Lysosomes , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Water
12.
Chem Sci ; 9(46): 8656-8664, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30627389

ABSTRACT

Single white light-emitting polymers (SWPs) represent a high-fidelity system for generating white light emission from polymers without phase separation compared to polymer blend systems. However, their device performance so far has been limited because of the unwanted hole scattering caused by an energy-level mismatch between emitters and hosts, and the large injection barrier at the polymer/anode interface. Here, we report novel poly(arylene phosphine oxide)-based all-phosphorescent SWPs by using the combination of a high-HOMO-level blue phosphor and high-HOMO-level poly(arylene phosphine oxide) host to achieve a low turn-on voltage of 2.8 V, high external quantum efficiency of 18.0% and remarkable power efficiency of 52.1 lm W-1, which makes them the most efficient SWPs so far. This record power efficiency is realized by using the high-HOMO-level blue phosphor to eliminate the hole scattering effect and by using the high-HOMO-level polymer host to reduce the hole injection barrier. This result represents an important progress in SWPs to achieve efficiency surpassing that of the polymer blends currently used for solution-processed white organic light-emitting diodes (WOLEDs) and even comparable with that of the small molecules used for vacuum-deposited WOLEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...