Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Anesthesiol ; 24(1): 137, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600490

ABSTRACT

BACKGROUND: With the increasing prevalence of colorectal cancer (CRC), optimizing perioperative management is of paramount importance. This study investigates the potential of stellate ganglion block (SGB), known for its stress response-mediating effects, in improving postoperative recovery. We postulate that preoperative SGB may enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. METHODS: We conducted a randomized controlled trial of 57 patients undergoing laparoscopic colorectal cancer surgery at a single center. Patients, aged 18-70 years, were randomly assigned to receive either preoperative SGB or standard care. SGB group patients received 10 mL of 0.2% ropivacaine under ultrasound guidance prior to surgery. Primary outcome was time to flatus, with secondary outcomes encompassing time to defecation, lying in bed time, visual analog scale (VAS) pain score, hospital stays, patient costs, intraoperative and postoperative complications, and 3-year mortality. A per-protocol analysis was used. RESULTS: Twenty-nine patients in the SGB group and 28 patients in the control group were analyzed. The SGB group exhibited a significantly shorter time to flatus (mean [SD] hour, 20.52 [9.18] vs. 27.93 [11.69]; p = 0.012), accompanied by decreased plasma cortisol levels (mean [SD], postoperatively, 4.01 [3.42] vs 7.75 [3.13], p = 0.02). Notably, postoperative pain was effectively managed, evident by lower VAS scores at 6 h post-surgery in SGB-treated patients (mean [SD], 4.70 [0.91] vs 5.35 [1.32]; p = 0.040). Furthermore, patients in the SGB group experienced reduced hospital stay length (mean [SD], day, 6.61 [1.57] vs 8.72 [5.13], p = 0.042). CONCLUSIONS: Preoperative SGB emerges as a promising approach to enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. CLINICAL TRIAL REGISTRATION: ChiCTR1900028404, Principal investigator: Xia Feng, Date of registration: 12/20/2019.


Subject(s)
Colorectal Neoplasms , Colorectal Surgery , Laparoscopy , Humans , Stellate Ganglion , Flatulence/complications , Double-Blind Method , Pain, Postoperative/epidemiology , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Laparoscopy/adverse effects , Colorectal Neoplasms/surgery , Ultrasonography, Interventional
2.
J Pers Med ; 13(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240993

ABSTRACT

(1) Background: Preclinical as well as population studies have connected general anesthesia and surgery with a higher risk of abnormal cognitive development, including emotional development. Gut microbiota dysbiosis in neonatal rodents during the perioperative period has been reported, however, the relevance of this to human children who undergo multiple anesthesia for surgeries is unknown. Given the emerging role of altered gut microbes in propagating anxiety and depression, we sought to study whether repeated infantile exposures to surgery and anesthesia affect gut microbiota and anxiety behaviors later in life. (2) Methods: This is a retrospectively matched cohort study comparing 22 pediatric patients of less than 3 years of age with multiple exposures (≥3) to anesthesia for surgeries and 22 healthy controls with no history of exposure to anesthesia. The parent report version of the Spence Children's Anxiety Scale (SCAS-P) was applied to evaluate anxiety in children aged between 6 and 9 years old. Additionally, the gut microbiota profiles of the two groups were compared using 16S rRNA gene sequencing. (3) Results: In behavioral tests, the p-SCAS score of obsessive compulsive disorder and social phobia were significantly higher in children with repeated anesthesia exposure relative to the controls. There were no significant differences between the two groups with respect to panic attacks and agoraphobia, separation anxiety disorder, physical injury fears, generalized anxiety disorder, and the total SCAS-P scores. In the control group, 3 children out of 22 were found to have moderately elevated scores, but none of them had abnormally elevated scores. In the multiple-exposure group, 5 children out of 22 obtained moderately elevated scores, while 2 scored as abnormally elevated. However, no statistically significant differences were detected in the number of children with elevated and abnormally elevated scores. The data show that repeated anesthesia and surgical exposures in children led to long-lasting severe gut microbiota dysbiosis. (4) Conclusions: In this preliminary study, our findings demonstrated that early repeated exposures to anesthesia and surgical predisposes children to anxiety as well as long-term gut microbiota dysbiosis. We should confirm these findings in a larger data population size and with detailed analysis. However, the authors cannot confirm an association between the dysbiosis and anxiety.

3.
Br J Anaesth ; 130(2): 191-201, 2023 02.
Article in English | MEDLINE | ID: mdl-36088134

ABSTRACT

BACKGROUND: Early exposure to general anaesthetics for multiple surgeries or procedures might negatively affect brain development. Recent studies indicate the importance of microbiota in the development of stress-related behaviours. We determined whether repeated anaesthesia and surgery in early life cause gut microbiota dysbiosis and anxiety-like behaviours in rats. METHODS: Sprague Dawley rats received skin incisions under sevoflurane 2.3 vol% three times during the first week of life. After 4 weeks, gut microbiota, anxiety-related behaviours, hippocampal serotonergic activity, and plasma stress hormones were tested. Subsequently, we explored the effect of faecal microbiota transplantation from multiple anaesthesia/surgery exposed rats after administration of a cocktail of antibiotics on anxiety-related behaviours. RESULTS: Anxiety-like behaviours were observed in rats with repeated anaesthesia/surgery exposures: In the OF test, multiple anaesthesia/surgery exposures induced a decrease in the time spent in the centre compared to the Control group (P<0.05, t=3.05, df=16, Cohen's d=1.44, effect size=0.58). In the EPM test, rats in Multiple AS group travelled less (P<0.05, t=5.09, df=16, Cohen's d=2.40, effective size=0.77) and spent less time (P<0.05, t=3.58, df=16, Cohen's d=1.69, effect size=0.65) in the open arms when compared to the Control group. Repeated exposure caused severe gut microbiota dysbiosis, with exaggerated stress response (P<0.01, t=4.048, df=16, Cohen's d=-1.91, effect size=-0.69), a significant increase in the hippocampal concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) (P<0.05; for 5-HT: t=3.33, df=18, Cohen's d=-1.49, effect size=-0.60; for 5-HIAA: t=3.12, df=18, Cohen's d=-1.40, effect size=-0.57), and changes in gene expression of serotonergic receptors later in life (for Htr1a: P<0.001, t=4.49, df=16, Cohen's d=2.24, effect size=0.75; for Htr2c: P<0.01, t=3.72, df=16, Cohen's d=1.86, effect size=0.68; for Htr6: P<0.001, t=7.76, df=16, Cohen's d=3.88, effect size=0.89). Faecal microbiota transplantation led to similar anxiety-like behaviours and changes in the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. CONCLUSIONS: Gut microbiota dysbiosis caused by early repeated exposure to anaesthesia and surgery affects long-term anxiety emotion behaviours in rats.


Subject(s)
Anesthesia , Gastrointestinal Microbiome , Rats , Animals , Serotonin/metabolism , Hydroxyindoleacetic Acid , Rats, Sprague-Dawley , Dysbiosis/chemically induced , Anxiety/etiology
4.
Front Aging Neurosci ; 14: 925728, 2022.
Article in English | MEDLINE | ID: mdl-35966788

ABSTRACT

Background: Developing brain is highly plastic and can be easily affected. Growing pediatric usage of anesthetics during painless procedures has raised concerns about the effect of low-dose anesthetics on neurodevelopment. It is urgent to ascertain the neuronal effect of low-dose Propofol, a widely used anesthetic in pediatrics, on developing brains. Methods: The behavioral tests after neonatal exposure to low-dose/high-dose Propofol in mice were conducted to clarify the cognitive effect. The nascent cells undergoing proliferation and differentiation stage in the hippocampus and cultured neural stem cells (NSCs) were further identified. In addition, single-nuclei RNA sequencing (snRNA-seq), NSCs bulk RNA-seq, and metabolism trials were performed for pathway investigation. Furthermore, small interfering RNA and stereotactic adenovirus injection were, respectively, used in NSCs and hippocampal to confirm the underlying mechanism. Results: Behavioral tests in mice showed enhanced spatial cognitive ability after being exposed to low-dose Propofol. Activated neurogenesis was observed both in hippocampal and cultured NSCs. Moreover, transcriptome analysis of snRNA-seq, bulk RNA-seq, and metabolism trials revealed a significantly enhanced oxidative phosphorylation (OXPHOS) level in NSCs. Furthermore, PGC-1α, a master regulator in mitochondria metabolism, was found upregulated after Propofol exposure both in vivo and in vitro. Importantly, downregulation of PGC-1α remarkably prevented the effects of low-dose Propofol in activating OXPHOS and neurogenesis. Conclusions: Taken together, this study demonstrates a novel alteration of mitochondrial function in hippocampal neurogenesis after low-dose Propofol exposure, suggesting the safety, even potentially beneficial effect, of low-dose Propofol in pediatric use.

5.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32938830

ABSTRACT

Fibroblast-like synoviocytes (FLSs) are critical to joint inflammation and destruction in rheumatoid arthritis (RA). Increased glycolysis in RA FLSs contributes to persistent joint damage. SUMOylation, a posttranslational modification of proteins, plays an important role in initiation and development of many diseases. However, the role of small ubiquitin-like modifier-activating (SUMO-activating) enzyme 1 (SAE1)/ubiquitin like modifier activating enzyme 2 (UBA2) in regulating the pathogenic FLS behaviors is unknown. Here, we found an increased expression of SAE1 and UBA2 in FLSs and synovial tissues from patients with RA. SAE1 or UBA2 knockdown by siRNA and treatment with GA, an inhibitor of SAE1/UBA2-mediated SUMOylation, resulted in reduced glycolysis, aggressive phenotype, and inflammation. SAE1/UBA2-mediated SUMOylation of pyruvate kinase M2 (PKM2) promoted its phosphorylation and nuclear translocation and decreased PK activity. Moreover, inhibition of PKM2 phosphorylation increased PK activity and suppressed glycolysis, aggressive phenotype, and inflammation. We further demonstrated that STAT5A mediated SUMOylated PKM2-induced glycolysis and biological behaviors. Interestingly, GA treatment attenuated the severity of arthritis in mice with collagen-induced arthritis and human TNF-α transgenic mice. These findings suggest that an increase in synovial SAE1/UBA2 may contribute to synovial glycolysis and joint inflammation in RA and that targeting SAE1/UBA2 may have therapeutic potential in patients with RA.


Subject(s)
Arthritis, Rheumatoid/pathology , Fibroblasts/pathology , Glycolysis , SUMO-1 Protein/metabolism , Synoviocytes/pathology , Ubiquitin-Activating Enzymes/metabolism , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Movement , Cell Proliferation , Female , Fibroblasts/metabolism , Humans , Male , Mice , Middle Aged , Phosphorylation , SUMO-1 Protein/genetics , Signal Transduction , Synoviocytes/metabolism , Ubiquitin-Activating Enzymes/genetics
6.
Neurochem Res ; 45(9): 1986-1996, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32378074

ABSTRACT

Numerous studies have shown that the inhaled general anesthetic sevoflurane imposes toxicity on the central nervous system during the developmental period but the underlying mechanisms remain unclear. Neuropeptide Y (NPY) was reported to have important neuroprotective effects, which can attenuate neuronal loss under pathological conditions. However, the effects of NPY on sevoflurane-induced hippocampal neuronal apoptosis have not been investigated. In this study, postnatal day 7 (PND7) Sprague-Dawley rats and primary cultured cells separated from hippocampi were exposed to sevoflurane (2.4% for 4 h) and the NPY expression levels after treatment were analyzed. Furthermore, neuronal apoptosis assay was conducted via immunofluorescence staining of cleaved caspase-3 and flow cytometry after exogenous NPY administration to PND7 rats as well as cultured hippocampal neurons to elucidate the role of NPY in sevoflurane-induced neurotoxicity. Our results showed the level of NPY gradually decreased within 24 h after sevoflurane exposure in both the hippocampus of PND7 rats and cultured hippocampal neurons, but not in cultured astrocytes. In the exogenous NPY pretreatment study, the proportion of cleaved caspase-3 positive cells in the CA1 region of the hippocampus was increased significantly at 24 h after sevoflurane treatment, while NPY pretreatment could reduce it. Similarly, NPY could also reverse the apoptogenic effect of sevoflurane on cultured neurons. Herein, our results showed that sevoflurane caused a significant decrease in NPY expression, whereas exogenous NPY supplementation could reduce sevoflurane-induced hippocampal neuronal apoptosis both in vivo and in vitro.


Subject(s)
Anesthetics, Inhalation/pharmacology , Apoptosis/drug effects , Hippocampus/drug effects , Neuropeptide Y/metabolism , Sevoflurane/pharmacology , Animals , Animals, Newborn , Astrocytes/drug effects , Down-Regulation/drug effects , Hippocampus/metabolism , Male , Neurons/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...