Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biomed Pharmacother ; 176: 116819, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834003

ABSTRACT

BACKGROUND AND PURPOSE: Our previous research discovered that cinnamamide derivatives are a new type of potential cardioprotective agents myocardial ischemia-reperfusion (MIR) injury, among which Compound 10 exhibits wonderful beneficial action in vitro. However, the exact mechanism of Compound 10 still needs to be elucidated. EXPERIMENTAL APPROACH: The protective effect of Compound 10 was determined by detecting the cell viability and LDH leakage rate in H9c2 cells subjected to H2O2. Alterations of electrocardiogram, echocardiography, cardiac infarct area, histopathology and serum myocardial zymogram were tested in MIR rats. Additionally, the potential mechanism of Compound 10 was explored through PCR. Network pharmacology and Western blotting was conducted to monitor levels of proteins related to autophagic flux and mTOR, autophagy regulatory substrate, induced by Compound 10 both in vitro and in vivo, as well as expressions of Sirtuins family members. KEY RESULTS: Compound 10 significantly ameliorated myocardial injury, as demonstrated by increased cell viability, decreased LDH leakage in vitro, and declined serum myocardial zymogram, ST elevation, cardiac infarct area and improved cardiac function and microstructure of heart tissue in vivo. Importantly, Compound 10 markedly enhanced the obstruction of autophagic flux and inhibited excessive autophagy initiation against MIR by decreased ATG5, Rab7 and increased P-mTOR and LAMP2. Furthermore, Sirt1 knockdown hindered Compound 10's regulation on mTOR, leading to interrupted cardiac autophagic flux. CONCLUSIONS AND IMPLICATIONS: Compound 10 exerted cardioprotective effects on MIR by reducing excessive autophagy and improving autophgic flux blockage. Our work would take a novel insight in seeking effective prevention and treatment strategies against MIR injury.

2.
Nat Mater ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605196

ABSTRACT

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

3.
Sci Rep ; 14(1): 8307, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594404

ABSTRACT

Due to the antiquity and difficulty of excavation, the Terracotta Warriors have suffered varying degrees of damage. To restore the cultural relics to their original appearance, utilizing point clouds to repair damaged Terracotta Warriors has always been a hot topic in cultural relic protection. The output results of existing methods in point cloud completion often lack diversity. Probability-based models represented by Denoising Diffusion Probabilistic Models have recently achieved great success in the field of images and point clouds and can output a variety of results. However, one drawback of diffusion models is that too many samples result in slow generation speed. Toward this issue, we propose a new neural network for Terracotta Warriors fragments completion. During the reverse diffusion stage, we initially decrease the number of sampling steps to generate a coarse result. This preliminary outcome undergoes further refinement through a multi-scale refine network. Additionally, we introduce a novel approach called Partition Attention Sampling to enhance the representation capabilities of features. The effectiveness of the proposed model is validated in the experiments on the real Terracotta Warriors dataset and public dataset. The experimental results conclusively demonstrate that our model exhibits competitive performance in comparison to other existing models.

4.
Environ Int ; 185: 108559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461778

ABSTRACT

Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.


Subject(s)
Microbiota , Ozone , Humans , Mice , Animals , Liver/metabolism , Metabolome , Lipids , Ozone/toxicity
5.
Bioact Mater ; 29: 50-71, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37621771

ABSTRACT

Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.

6.
Gene ; 880: 147624, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37422178

ABSTRACT

Enhancing meat production and quality is the eternal theme for pig breeding industries. Fat deposition has always been the focus of research in practical production because it is closely linked to pig production efficiency and pork quality. In the current study, multi-omics techniques were performed to explore the modulatory mechanisms of backfat (BF) accumulation at three core developmental stages for Ningxiang pigs. Our results identified that 15 differentially expressed genes (DEGs) and 9 significantly changed metabolites (SCMs) contributed to the BF development via the cAMP signaling pathway, regulation of lipolysis in adipocytes, and biosynthesis of unsaturated fatty acids. Herein, we found a series of candidate genes such as adrenoceptor beta 1 (ADRB1), adenylate cyclase 5 (ADCY5), ATPase Na+/K+ transporting subunit beta 1 (ATP1B1), ATPase plasma membrane Ca2+ transporting 3 (ATP2B3), ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2), perilipin 1 (PLIN1), patatin like phospholipase domain containing 3 (PNPLA3), ELOVL fatty acid elongase 5 (ELOVL5) and metabolites like epinephrine, cAMP, arachidonic acid, oleic acid, linoleic acid, and docosahexaenoic acid existed age-specificeffects and played important roles in lipolysis, fat accumulation, and fatty acid composition. Our findings provide a reference for molecular mechanisms in BF tissue development and the optimization of carcass quality.


Subject(s)
Subcutaneous Fat , Transcriptome , Swine/genetics , Animals , Subcutaneous Fat/metabolism , Fatty Acids/metabolism , Gene Expression Profiling , Adenosine Triphosphatases/metabolism
7.
Front Cell Dev Biol ; 11: 1185823, 2023.
Article in English | MEDLINE | ID: mdl-37465009

ABSTRACT

Introduction: The development of skeletal muscle is regulated by regulatory factors of genes and non-coding RNAs (ncRNAs). Methods: The objective of this study was to understand the transformation of muscle fiber type in the longissimus dorsi muscle of male Ningxiang pigs at four different growth stages (30, 90, 150, and 210 days after birth, n = 3) by histological analysis and whole transcriptome sequencing. Additionally, the study investigated the expression patterns of various RNAs involved in muscle fiber transformation and constructed a regulatory network for competing endogenous RNA (ceRNA) that includes circular RNA (circRNA)/long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA). Results: Histomorphology analysis showed that the diameter of muscle fiber reached its maximum at 150 days after birth. The slow muscle fiber transformation showed a pattern of initial decrease followed by an increase. 29,963 circRNAs, 2,683 lncRNAs, 986 miRNAs and 22,411 mRNAs with expression level ≥0 were identified by whole transcriptome sequencing. Furthermore, 642 differentially expressed circRNAs (DEc), 505 differentially expressed lncRNAs (DEl), 316 differentially expressed miRNAs (DEmi) and 6,090 differentially expressed mRNAs (DEm) were identified by differential expression analysis. Functions of differentially expressed mRNA were identified by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO enrichment analysis indicates that 40 known genes and 6 new genes are associated with skeletal muscle development. Additionally, KEGG analysis shows that these genes regulate skeletal muscle development via MAPK, FoxO, Hedgehog, PI3K-Akt, Notch, VEGF and other signaling pathways. Through protein-protein interaction (PPI) and transcription factor prediction (TFP), the action mode of skeletal muscle-related genes was explored. PPI analysis showed that there were stable interactions among 19 proteins, meanwhile, TFP analysis predicted 22 transcription factors such as HMG20B, MYF6, MYOD1 and MYOG, and 12 of the 19 interacting proteins were transcription factors. The regulatory network of ceRNA related to skeletal muscle development was constructed based on the correlation of various RNA expression levels and the targeted binding characteristics with miRNA. The regulatory network included 31 DEms, 59 miRNAs, 667 circRNAs and 224 lncRNAs. conclusion: Overall, the study revealed the role of ceRNA regulatory network in the transformation of skeletal muscle fiber types in Ningxiang pigs, which contributes to the understanding of ceRNA regulatory network in Ningxiang pigs during the skeletal muscle development period.

8.
Genes (Basel) ; 14(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37372447

ABSTRACT

The processes of muscle growth and development, including myoblast proliferation, migration, differentiation, and fusion, are modified by a variety of regulatory factors. MYL4 plays an important role in atrial development, atrial cardiomyopathy, muscle-fiber size, and muscle development. The structural variation (SV) of MYL4 was found via the de novo sequencing of Ningxiang pigs, and the existence of SV was verified in the experiments. The genotype distribution of Ningxiang pigs and Large White pigs was detected, and it was found that Ningxiang pigs were mainly of the BB genotype and that Large White pigs were mainly of the AB genotype. However, the molecular mechanisms behind the MYL4-mediated regulation of skeletal muscle development need to be deeply explored. Therefore, RT-qPCR, 3'RACE, CCK8, EdU, Western blot, immunofluorescence, flow cytometry, and bioinformation analysis were used to explore the function of MYL4 in myoblast development. The cDNA of MYL4 was successfully cloned from Ningxiang pigs, and its physicochemical properties were predicted. The expression profiles in six tissues and four stages of Ningxiang pigs and Large White pigs were found to be the highest in the lungs and 30 days after birth. The expression of MYL4 increased gradually with the extension of the myogenic differentiation time. The myoblast function test showed that the overexpression of MYL4 inhibited proliferation and promoted apoptosis and differentiation. The knockdown of MYL4 showed the opposite result. These results enhance our understanding of the molecular mechanisms of muscle development and provide a solid theoretical foundation for further exploring the role of the MYL4 gene in muscle development.


Subject(s)
Atrial Fibrillation , Animals , Swine/genetics , Myoblasts/metabolism , Muscle Development/genetics
9.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373006

ABSTRACT

Muscle cell growth plays an important role in skeletal muscle development. Circular RNAs (circRNAs) have been proven to be involved in the regulation of skeletal muscle growth and development. In this study, we explored the effect of circTTN on myoblast growth and its possible molecular mechanism. Using C2C12 cells as a functional model, the authenticity of circTTN was confirmed by RNase R digestion and Sanger sequencing. Previous functional studies have showed that the overexpression of circTTN inhibits myoblast proliferation and differentiation. Mechanistically, circTTN recruits the PURB protein on the Titin (TTN) promoter to inhibit the expression of the TTN gene. Moreover, PURB inhibits myoblast proliferation and differentiation, which is consistent with circTTN function. In summary, our results indicate that circTTN inhibits the transcription and myogenesis of the host gene TTN by recruiting PURB proteins to form heterotypic complexes. This work may act as a reference for further research on the role of circRNA in skeletal muscle growth and development.


Subject(s)
MicroRNAs , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Muscle Development/genetics , Transcription, Genetic , Muscle, Skeletal/metabolism
10.
Genes (Basel) ; 14(5)2023 05 08.
Article in English | MEDLINE | ID: mdl-37239410

ABSTRACT

The growth and development of the Longissimus Dorsi muscle are complex, playing an important role in the determination of pork quality. The study of the Longissimus Dorsi muscle at the mRNA level is particularly crucial for finding molecular approaches to improving meat quality in pig breeding. The current study utilized transcriptome technology to explore the regulatory mechanisms of muscle growth and intramuscular fat (IMF) deposition in the Longissimus Dorsi muscle at three core developmental stages (natal stage on day 1, growing stage on day 60, and finishing stage on day 210) in Ningxiang pigs. Our results revealed 441 differentially expressed genes (DEGs) in common for day 1 vs. day 60 and day 60 vs. day 210, and GO (Gene Ontology) analysis showed that candidate genes RIPOR2, MEGF10, KLHL40, PLEC, TBX3, FBP2, and HOMER1 may be closely related to muscle growth and development, while KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that DEGs (UBC, SLC27A5, RXRG, PRKCQ, PRKAG2, PPARGC1A, PLIN5, PLIN4, IRS2, and CPT1B) involved the PPAR (Peroxisome Proliferator-Activated Receptor) signaling pathway and adipocytokine signaling pathway, which might play a pivotal role in the regulation of IMF deposition. PPI (Protein-Protein Interaction Networks) analysis found that the STAT1 gene was the top hub gene. Taken together, our results provide evidence for the molecular mechanisms of growth and development and IMF deposition in Longissimus Dorsi muscle to optimize carcass mass.


Subject(s)
Gene Expression Profiling , Muscle, Skeletal , Swine/genetics , Animals , Muscle, Skeletal/metabolism , Transcriptome , Meat/analysis , Genome
11.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240251

ABSTRACT

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.


Subject(s)
MicroRNAs , Signal Transduction , Animals , Swine , Cell Line , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , Muscle Development/genetics , Cell Proliferation/genetics
12.
Biomater Res ; 27(1): 39, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143168

ABSTRACT

Self-assembled nanomedicine holds great potential in cancer theragnostic. The structures and dynamics of nanomedicine can be affected by a variety of non-covalent interactions, so it is essential to ensure the self-assembly process at atomic level. Molecular dynamics (MD) simulation is a key technology to link microcosm and macroscale. Along with the rapid development of computational power and simulation methods, scientists could simulate the specific process of intermolecular interactions. Thus, some experimental observations could be explained at microscopic level and the nanomedicine synthesis process would have traces to follow. This review not only outlines the concept, basic principle, and the parameter setting of MD simulation, but also highlights the recent progress in MD simulation for self-assembled cancer nanomedicine. In addition, the physicochemical parameters of self-assembly structure and interaction between various assembled molecules under MD simulation are also discussed. Therefore, this review will help advanced and novice researchers to quickly zoom in on fundamental information and gather some thought-provoking ideas to advance this subfield of self-assembled cancer nanomedicine.

13.
Acta Biomater ; 166: 604-614, 2023 08.
Article in English | MEDLINE | ID: mdl-37156432

ABSTRACT

Ferroptosis-based nanoplatforms have shown great potential in cancer therapy. However, they also face issues such as degradation and metabolism. Carrier-free nanoplatforms consisting of active drugs can effectively avoid the security issues associated with additional carrier ingredients. Herein, a biomimetic carrier-free nanoplatform (HESN@CM) was designed to treat cancer by modulating cascade metabolic pathways of ferroptosis. CCR2-overexpressing macrophage membrane-modified HESN can target cancer cells via the CCR2-CCL2 axis. The acidic tumor microenvironment (TME) can disrupt the supramolecular interaction of HESN, releasing hemin and erastin. Then, erastin could induce cancer cells ferroptosis by inhibiting system XC- pathways, while hemin, a vital component of blood to transport oxygen, could be broken down by heme oxygenase-1 (HO-1), increasing the intracellular Fe2+ concentration to induce cancer cells' ferroptosis further. Meanwhile, erastin could enhance the activity of HO-1, further promoting the release of Fe2+ from hemin. As a result, HESN@CM demonstrated superior therapeutic efficacy in both primary and metastatic tumors in vitro and in vivo. The carrier-free HESN@CM provided cascade ferroptosis tumor therapy strategies for potential clinical application. STATEMENT OF SIGNIFICANCE: CCR2-overexpressing biomimetic carrier-free nanoplatform (HESN@CM) was designed for cancer treatment by modulating metabolic pathways of ferroptosis. HESN modified with CCR2-overexpressing macrophage membrane can target tumor cells via the CCR2-CCL2 axis. HESN was composed of hemin and erastin without additional vectors. Erastin could directly induce ferroptosis, while hemin could be broken down by heme oxygenase-1 (HO-1), increasing the intracellular Fe2+ concentration to enhance ferroptosis further. Meanwhile, erastin could improve the activity of HO-1, promoting the release of Fe2+ from hemin. Therefore, HESN@CM with good bioavailability, stability, and simple preparation can realize cascade ferroptosis tumor therapy and have the potential prospect of clinical translation.


Subject(s)
Ferroptosis , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Hemin/pharmacology , Biomimetics , Cell Line, Tumor
14.
J Med Chem ; 66(7): 4275-4293, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37014989

ABSTRACT

Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.


Subject(s)
Drug Resistance, Neoplasm , Histone Demethylases , Humans , Drug Resistance , Drug Resistance, Neoplasm/genetics , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Immunotherapy , Neoplasms/drug therapy , Neoplasms/metabolism
15.
Metabolism ; 142: 155532, 2023 05.
Article in English | MEDLINE | ID: mdl-36889378

ABSTRACT

Heart diseases are associated with substantial morbidity and mortality worldwide. The underlying mechanisms and pathological changes associated with cardiac diseases are exceptionally complex. Highly active cardiomyocytes require sufficient energy metabolism to maintain their function. Under physiological conditions, the choice of fuel is a delicate process that depends on the whole body and organs to support the normal function of heart tissues. However, disordered cardiac metabolism has been discovered to play a key role in many forms of heart diseases, including ischemic heart disease, cardiac hypertrophy, heart failure, and cardiac injury induced by diabetes or sepsis. Regulation of cardiac metabolism has recently emerged as a novel approach to treat heart diseases. However, little is known about cardiac energy metabolic regulators. Histone deacetylases (HDACs), a class of epigenetic regulatory enzymes, are involved in the pathogenesis of heart diseases, as reported in previous studies. Notably, the effects of HDACs on cardiac energy metabolism are gradually being explored. Our knowledge in this respect would facilitate the development of novel therapeutic strategies for heart diseases. The present review is based on the synthesis of our current knowledge concerning the role of HDAC regulation in cardiac energy metabolism in heart diseases. In addition, the role of HDACs in different models is discussed through the examples of myocardial ischemia, ischemia/reperfusion, cardiac hypertrophy, heart failure, diabetic cardiomyopathy, and diabetes- or sepsis-induced cardiac injury. Finally, we discuss the application of HDAC inhibitors in heart diseases and further prospects, thus providing insights into new treatment possibilities for different heart diseases.


Subject(s)
Diabetes Mellitus , Heart Diseases , Heart Failure , Humans , Histone Deacetylases , Heart Diseases/drug therapy , Heart Diseases/etiology , Heart Diseases/metabolism , Cardiomegaly , Heart Failure/drug therapy , Myocytes, Cardiac/metabolism , Energy Metabolism , Diabetes Mellitus/metabolism
16.
Eur J Pharmacol ; 945: 175615, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841283

ABSTRACT

Myocardial infarction (MI) is irreversible damage caused by ischemia and hypoxia in coronary arteries accompanied by elevated catecholamine levels, leading to the accumulation of free radicals. Our previous study discovered coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents possessing strong anti-oxidative effects in cardiomyocytes. Therefore, identifying the compound with the highest cardioprotective activity, 5h, and the mechanism involved was necessary. As a kind of catecholamine, isoproterenol can clinically induce myocardial infarction injury similar to the symptoms of myocardial infarction patients. Our experiments explored the underlying mechanism of this effect of compound 5h by assessing cardiac function, infarct size, histopathological changes, and downregulation of Sirt1 by transfection of adenovirus in vitro and by administering Ex527, a specific inhibitor of Sirt1, in vivo. Compound 5h exhibited strong cardioprotective actions in vivo and in vitro via improving cell survival and cardiac function and decreasing the cellular oxidative stress and cardiac infarct size against MI. Furthermore, compound 5h significantly enhanced cardiac expression of Sirt1, subsequently activating the Nrf2/NQO1 signaling pathway. However, adenovirus-induced Sirt1 downregulation or Sirt1-specific inhibitor largely blocked such beneficial effects of 5h in vitro and in vivo, respectively. Taken together, our results demonstrated, for the first time, that the cardioprotective action of 5h against MI was mediated by reducing oxidative stress and apoptosis through the Sirt1/Nrf2 signaling pathway. Our findings proposed novel insights in developing and evaluating coumarin-derived imino sulfonate compounds as epigenetics-targeted drug therapy for MI.


Subject(s)
Heart Injuries , Myocardial Infarction , Myocardial Reperfusion Injury , Humans , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Signal Transduction , Oxidative Stress , Myocytes, Cardiac/metabolism , Heart Injuries/metabolism , Apoptosis , Coumarins/pharmacology , Coumarins/therapeutic use
17.
Psychiatry Res ; 320: 115050, 2023 02.
Article in English | MEDLINE | ID: mdl-36645989

ABSTRACT

Autism spectrum disorder (ASD), developmental language disorder (DLD), and global developmental delay (GDD) are common neurodevelopmental disorders in early childhood; however, the differential diagnosis of these disorders is difficult because of overlapping symptoms. Drawing on a cohort of 2004 children with ASD, DLD, or GDD, this study developed machine learning classifiers using decision trees, support vector machines, eXtreme gradient boosting (XGB), logistic regression, and neural networks by combining several easily accessible behavioral and developmental assessment instruments. The best-performing XGB model was further simplified into a two-stage decision model (TS-DM) to achieve better interpretability. Model performance was tested and compared with that of 12 pediatricians on an external dataset of 60 children. The accuracies of the resident pediatricians, senior pediatricians, TS-DM, and XGB were 53.3%, 66.7%, 75.0%, and 78.3%, respectively. Machine learning has the potential to identify these three neurodevelopmental disorders by integrating information from multiple instruments and thereby may increase our understanding of the roles of different behavioral and developmental characteristics in the different diagnoses.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Child , Humans , Child, Preschool , Autism Spectrum Disorder/diagnosis , Neurodevelopmental Disorders/diagnosis , Machine Learning , Neural Networks, Computer , Diagnosis, Differential
18.
Adv Mater ; 35(8): e2206741, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36303536

ABSTRACT

Scintillator-based X-ray imaging has attracted great attention from industrial quality inspection and security to medical diagnostics. Herein, a series of lanthanide(III)-Cu4 I4 heterometallic organic frameworks (Ln-Cu4 I4 MOFs)-based X-ray scintillators are developed by rationally assembling X-ray absorption centers ([Cu4 I4 ] clusters) and luminescent chromophores (Ln(III) ions) in a specific manner. Under X-ray irradiation, the heavy inorganic units ([Cu4 I4 ] clusters) absorb the X-ray energy to populate triplet excitons via halide-to-ligand charge transfer (XLCT) combined with the metal-to-ligand charge-transfer (MLCT) state (defined as the X/MLCT state), and then the 3 X/MLCT excited state sensitizes Tb3+ for intense X-ray-excited luminescence via excitation energy transfer. The obtained Tb-Cu4 I4 MOF scintillators exhibit high resistance to humidity and radiation, excellent linear response to X-ray dose rate, and high X-ray relative light yield of 29 379 ± 3000 photons MeV-1 . The relative light yield of Tb-Cu4 I4 MOFs is ≈3 times higher than that of the control Tb(III) complex. X-ray imaging tests show that the Tb-Cu4 I4 MOFs-based flexible scintillator film exhibits a high spatial resolution of 12.6 lp mm-1 . These findings not only provide a promising design strategy to develop lanthanide-MOF-based scintillators with excellent scintillation performance, but also exhibit high-resolution X-ray imaging for biological specimens and electronic chips.

19.
Vet Sci ; 9(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36423090

ABSTRACT

MicroRNAs (miRNAs) are key regulators involved in the myogenic process in skeletal muscles. miR-708-5p plays an important role in various biochemical and physiological processes, but its function in skeletal myogenesis remain unclear. In this study, we first explored the effects of miR-708-5p on C2C12 proliferation and differentiation by overexpression and interference experiments. Then, we predicted the target genes of miR-708-5p and analyzed their function. We found that miR-708-5p was gradually increased during myoblast differentiation. Overexpression of miR-708-5p significantly inhibited cell proliferation and promoted the differentiation of myoblasts. A total of 253 target genes were predicted using a bioinformatics approach. These genes were significantly enriched in muscle growth-related GO terms and KEGG pathways, such as actin filament organization, actin cytoskeleton organization, PI3K-Akt pathway, insulin pathway, and Jak-STAT pathway. Among them, Pik3ca, Pik3r3, and Irs1 were considered to be the key target genes of miR-708-5p. To sum up, miR-708-5p inhibited C2C12 cells proliferation and promoted C2C12 cells differentiation. Its target genes significantly enriched in GO terms and KEGG pathways related to the development and growth of muscle. Our results provided a basis for studies on the function and mechanism of miR-708-5p regulating skeletal muscle growth and development.

20.
Sci Rep ; 12(1): 9450, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676310

ABSTRACT

To obtain a higher simplification rate while retaining geometric features, a simplification framework for the point cloud is proposed. Firstly, multi-angle images of the original point cloud are obtained with a virtual camera. Then, feature lines of each image are extracted by deep neural network. Furthermore, according to the proposed mapping relationship between the acquired 2D feature lines and original point cloud, feature points of the point cloud are extracted automatically. Finally, the simplified point cloud is obtained by fusing feature points and simplified non-feature points. The proposed simplification method is applied to four data sets and compared with the other six algorithms. The experimental results demonstrate that our proposed simplification method has the superiority in terms of both retaining geometric features and high simplification rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...