Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13714, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877113

ABSTRACT

As the most promising advanced energy storage system, lithium-sulfur batteries (LSBs) are highly favored by the researchers because of their advantages of high energy density (2500 W h kg-1), low cost and non-pollution. However, the low conductivity, volume expansion of sulfur, and shuttle effect are still the great hindrance to the practical application of LSBs. Herein, the above problems can be addressed through the following strategies: (1) Hollow carbon microspheres with high specific surface area were constructed as sulfur hosts to increase sulfur loading while also being able to enhance the physical adsorption of polysulfides; (2) the loading of Mn3O4 particles on the basis of hollow carbon microspheres facilitates the capture and adsorption of polysulfides; (3) the hollow carbon sphere structure as a conductive network can provide more pathways for rapid electrical/ionic transport and also accelerate electrolyte wetting. Moreover, the thinner shell of hollow carbon microsphere is conducive to ion diffusion and speed up the reaction rate. Thus, the NHCS/Mn3O4/S composites exhibit a high discharge specific capacity of 1010.3 mAh g-1 at first and still maintained a reversible capacity of 269.2 mAh g-1 after 500 cycles. This work presents a facile sustainable and efficient synergistic strategy for the development of advanced LSBs.

2.
J Colloid Interface Sci ; 660: 657-668, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271802

ABSTRACT

The electrically insulating and volumetric deformation of sulfur and the shuttle effect of the intermediate lithium polysulfide (LiPSs) have severely hindered the development of lithium-sulfur batteries (LSBs). Herein, a synergistic strategy of hierarchical porous nitrogen-doped carbon microspheres (PNCM) derived from low-cost biomass with surface-coated AlF3 nanolayer as a multifunctional sulfur host (denoted as PNCM@S@AlF3) was developed. The PNCM not only possesses an abundant pore structure, large surface area, and high electrical conductivity but also features an intrinsic N-doped and fluorinated framework, which effectively enhances the physical adsorption and chemical anchoring to LiPSs. In addition, the AlF3 nanolayer protects the open surface of the porous carbon to isolate sulfur species from the electrolyte to reduce irreversible losses while accelerating the redox kinetics of LiPSs through strong polar adsorption and bonding. Hence, the PNCM@S@AlF3 cathode exhibits an initial capacity as high as 1176.2 mAh/g at 0.2C, and the cycling stability and rate capability are superior to that of PNCM@S without AlF3 coating. Impressively, the PNCM@S@AlF3 cathode delivers stable long-term cycling performance at a high rate of 2C, with 95.6% capacity retention after 500 cycles. This work presents a facile, sustainable, and efficient synergistic strategy for developing advanced LSBs.

3.
Chemistry ; 27(41): 10628-10636, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-33837576

ABSTRACT

Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g-1 and a cumulative pore volume of 1.19 cm3 g-1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g-1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g-1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.

SELECTION OF CITATIONS
SEARCH DETAIL