Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617277

ABSTRACT

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

2.
Data Brief ; 52: 109950, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38125372

ABSTRACT

The Bacillus velezensis strain NBNZ-0060 was isolated from the bottom sediment samples of the lake Jin in Wuhan, China. This strain is an aerobic denitrifying bacterium and able to promote growth of submerged macrophytes. The 3,929,784 bp entire genome contains 3,781 coding sequences (CDS), 27 rRNAs, 85 tRNAs, 5 ncRNAs, with an average G + C content of 46.5%. The average nucleotide identity and digital DNA-DNA values between strain NBNZ-0060 and Bacillus velezensis NRRL B-41580T were 98.28% and 84.5%, respectively. The genome data have been deposited in NCBI with the accession number CP133277.1.

3.
J Am Chem Soc ; 145(48): 26052-26060, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37982690

ABSTRACT

Engineering the wettability of surfaces with hydrophobic organics has myriad applications in heterogeneous catalysis and the large-scale chemical industry; however, the mechanisms behind may surpass the proverbial hydrophobic kinetic benefits. Herein, the well-studied In2O3 methanol synthesis photocatalyst has been used as an archetype platform for a hydrophobic treatment to enhance its performance. With this strategy, the modified samples facilitated the tuning of a wide range of methanol production rates and selectivity, which were optimized at 1436 µmol gcat-1 h-1 and 61%, respectively. Based on in situ DRIFTS and temperature-programmed desorption-mass spectrometry, the surface-decorated alkylsilane coating on In2O3 not only kinetically enhanced the methanol synthesis by repelling the produced polar molecules but also donated surface active H to facilitate the subsequent hydrogenation reaction. Such a wettability design strategy seems to have universal applicability, judged by its success with other CO2 hydrogenation catalysts, including Fe2O3, CeO2, ZrO2, and Co3O4. Based on the discovered kinetic and mechanistic benefits, the enhanced hydrogenation ability enabled by hydrophobic alkyl groups unleashes the potential of the surface organic chemistry modification strategy for other important catalytic hydrogenation reactions.

4.
Article in English | MEDLINE | ID: mdl-37831570

ABSTRACT

The blood pressure (BP) waveform is a vital source of physiological and pathological information concerning the cardiovascular system. This study proposes a novel attention-guided conditional generative adversarial network (cGAN), named PPG2BP-cGAN, to estimate BP waveforms based on photoplethysmography (PPG) signals. The proposed model comprises a generator and a discriminator. Specifically, the UNet3+-based generator integrates a full-scale skip connection structure with a modified polarized self-attention module based on a spatial-temporal attention mechanism. Additionally, its discriminator comprises PatchGAN, which augments the discriminative power of the generated BP waveform by increasing the perceptual field through fully convolutional layers. We demonstrate the superior BP waveform prediction performance of our proposed method compared to state-of-the-art (SOTA) techniques on two independent datasets. Our approach first pre-trained on a dataset containing 683 subjects and then tested on a public dataset. Experimental results from the Multi-parameter Intelligent Monitoring in Intensive Care dataset show that the proposed method achieves a root mean square error of 3.54, mean absolute error of 2.86, and Pearson coefficient of 0.99 for BP waveform estimation. Furthermore, the estimation errors (mean error ± standard deviation error) for systolic BP and diastolic BP are 0.72 ± 4.34 mmHg and 0.41 ± 2.48 mmHg, respectively, meeting the American Association for the Advancement of Medical Instrumentation standard. Our approach exhibits significant superiority over SOTA techniques on independent datasets, thus highlighting its potential for future applications in continuous cuffless BP waveform measurement.

5.
J Am Chem Soc ; 145(24): 13134-13146, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37278596

ABSTRACT

Stable metal nitrides (MN) are promising materials to fit the future "green" ammonia-hydrogen nexus. Either through catalysis or chemical looping, the reductive hydrogenation of MN to MN1-x is a necessary step to generate ammonia. However, encumbered by the formation of kinetically stable M-NH1─3 surface species, this reduction step remains challenging under mild conditions. Herein, we discovered that deleterious Ti-NH1─3 accumulation on TiN can be circumvented photochemically with supported single atoms and clusters of platinum (Pt1-Ptn) under N2-H2 conditions. The photochemistry of TiN selectively promoted Ti-NH formation, while Pt1-Ptn effectively transformed any formed Ti-NH into free ammonia. The generated ammonia was found to originate mainly from TiN reduction with a minor contribution from N2 activation. The knowledge accrued from this fundamental study could serve as a springboard for the development of MN materials for more efficient ammonia production to potentially disrupt the century-old fossil-powered Haber-Bosch process.

6.
Angew Chem Int Ed Engl ; 62(27): e202304470, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37137871

ABSTRACT

Cobalt ferrite (CoFe2 O4 ) spinel has been found to produce C2 -C4 hydrocarbons in a single-step, ambient-pressure, photocatalytic hydrogenation of CO2 with a rate of 1.1 mmol g-1 h-1 , selectivity of 29.8 % and conversion yield of 12.9 %. On stream the CoFe2 O4 reconstructs to a CoFe-CoFe2 O4 alloy-spinel nanocomposite which facilitates the light-assisted transformation of CO2 to CO and hydrogenation of the CO to C2 -C4 hydrocarbons. Promising results obtained from a laboratory demonstrator bode well for the development of a solar hydrocarbon pilot refinery.

7.
BMC Musculoskelet Disord ; 23(1): 1119, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550505

ABSTRACT

BACKGROUND: Work-related neck pain (WRNP) is a leading cause of disability and absenteeism. Patients with neck pain often have neck muscle tenderness and decreased cervical mobility, which are sometimes combined with psychosocial issues, such as pain catastrophising, thereby reducing their work ability. Whilst multidisciplinary treatments, including pharmacological interventions, manual therapy and specific neck exercises, have produced positive outcomes, effective personalised treatment modalities are still needed. Furthermore, manual therapies using the hands can bring fatigue to therapist. Occiflex is a computerised device that can provide personalised segmental joint mobilisation based on symptoms and injury of the patient and then provide a medium range of joint activities to improve range of cervical motion. This study aims to compare the effect of computerised mobilisation performed with Occiflex with that of traditional manual therapy on WRNP. METHODS: We will conduct a prospective randomised controlled trial including 150 patients with WRNP. These patients will be randomly assigned to one of three groups: (i) home exercise (TE), (ii) home exercise plus Occiflex therapy and (iii) home exercise plus manual therapy delivered by a physical therapist. Ten treatment sessions will be performed in four weeks. During the trial, these patients will receive only the assigned treatment and the standard patient education and will be asked not to use any analgesics unless strictly necessary. Assessments by trained evaluators will occur at baseline, week 4 and week 12. The primary outcome measures will include visual analogue scale (VAS) for pain and neck disability index (NDI) at each time point. Secondary outcome measures will include cervical range of motion (CROM), pressure pain threshold (PPT), global perceived effect (GPE) and sick leave. Group by time differences will be analysed using linear mixed models with repeated measures. DISCUSSION: This protocol describes the methods for a randomised controlled trial to compare the effectiveness of computerised versus manual mobilisation techniques in treating WRNP. The results will provide an alternative method (Occiflex) that is possibly effective for treating neck pain whilst minimising the manual work done by therapists. TRIAL REGISTRATION: The study protocol was retrospectively registered at http://www.chictr.org.cn (registration number: ChiCTR2100053076) on November 10, 2021.


Subject(s)
Musculoskeletal Manipulations , Neck Pain , Humans , Neck Pain/therapy , Neck Pain/diagnosis , Prospective Studies , Physical Therapy Modalities , Musculoskeletal Manipulations/methods , Neck , Exercise Therapy/methods , Treatment Outcome , Randomized Controlled Trials as Topic
8.
Langmuir ; 38(49): 15156-15164, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36442080

ABSTRACT

Photocatalytic hydrogen production technology from water is a more effective and promising method to solve energy and environmental crises. In this work, flowerlike CaMoO4 microspheres were successfully synthesized by an ultrasonic precipitation method and modified with variable concentrations of CdSe NCs. CdSe/CaMoO4 microspheres showed increased light absorption ability, larger relative surface area, lower electrochemical impedance, and longer fluorescence lifetime. The photocatalytic hydrogen production rate of CdSe/CaMoO4 microspheres could reach up to 10 162.33 µmol g-1 h-1. The constructed type-I heterostructure improved the separation of photogenerated electrons and inhibited the rapid recombination of photogenerated electrons and holes, thus enhancing the photocatalytic hydrogen production performance. CdSe/CaMoO4 with high hydrogen production activity would be an efficient photocatalyst for hydrogen production applications.

9.
Front Psychol ; 13: 842378, 2022.
Article in English | MEDLINE | ID: mdl-35418921

ABSTRACT

Mental health issues are becoming increasingly prevalent amongst university students. However, research on the psychological profile of the general university population is relatively limited. Thus, this study analyses the current state of university students' psychological conditions; the demographic differences in depression, anxiety, and stress and the influencing factors. The objectives are to provide additional appropriate guidance in mental health for university students with different demographic characteristics. A cross-sectional study of 6,032 university students nationwide was conducted from October 2020 to January 2021. A randomized whole-group sampling method was used to select the study participants, and the 21-item Depression, Anxiety, and Stress Scale (DASS) was used. P < 0.05 in the final model were considered statistically significant. The number of university students with no complain of depression, anxiety, or stress was 3,751 (62.2%). The odds of developing complain of depression were higher amongst anxious respondents (AOR = 23.417, 95% CI: 19.706, 27.826) and senior year (AOR = 2.210, 95% CI: 1.657, 2.947) than their counterparts. Students with "myopia" were 1.263 times more likely to be anxious (AOR = 1.263, 95% CI: 1.042-1.530). In terms of "impaired" or not, impaired is defined as any injury, such as sprain, strain, and fracture, "impaired" university students were 1.321 times more likely to be anxious (AOR = 1.321, 95% CI: 1.064-1.641). Furthermore, history of impairment and myopia increased the odds of stress by 1.305 (AOR = 1.305, 95% CI: 1.022-1.667) and 1.305 (AOR = 1.305, 95% CI: 1.012-1.683), respectively. Myopia, physical-activity-related injury (PARI) and irrational eating habits are risk factors for complain of anxiety and stress. Males, upper grades, low parental education, and irrational eating habits are risk factors for complain of depression. Low physical activity levels are also an influential factor for complain of depression. DASS consists of interchangeable risk factors and multiple complains of DASS may coexist.

10.
Oncogene ; 41(9): 1281-1297, 2022 02.
Article in English | MEDLINE | ID: mdl-35110680

ABSTRACT

N6-methyladenosine (m6A) is the most universal internal RNA modification on messenger RNAs and regulates the fate and functions of m6A-modified transcripts through m6A-specific binding proteins. Nevertheless, the functional role and potential mechanism of the m6A reading proteins in ocular melanoma tumorigenicity, especially cancer stem-like cell (CSC) properties, remain to be elucidated. Herein, we demonstrated that the m6A reading protein YTHDF3 promotes the translation of the target transcript CTNNB1, contributing to ocular melanoma propagation and migration through m6A methylation. YTHDF3 is highly expressed in ocular melanoma stem-like cells and abundantly enriched in ocular melanoma tissues, which is related to poor clinical prognosis. Moreover, YTHDF3 is required for the maintenance of CSC properties and tumor initiation capacity in ocular melanoma both in vitro and in vivo. Ocular melanoma cells with targeted YTHDF3 knockdown exhibited inhibitory tumor proliferation and migration abilities. Transcriptome-wide mapping of m6A peaks and YTHDF3 binding peaks on mRNAs revealed a key target gene candidate, CTNNB1. Mechanistically, YTHDF3 enhances CTNNB1 translation through recognizing and binding the m6A peaks on CTNNB1 mRNA.


Subject(s)
RNA, Messenger
11.
Dev Growth Differ ; 64(2): 88-97, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34519039

ABSTRACT

Plant Rho small GTPases (Rop/Rac) are versatile molecular switches regulating many plant developmental processes. Particularly, their important functions in regulating pollen development have been demonstrated in Arabidopsis. A group of conserved Rop/Rac activators RopGEFs were recently reported to regulate rice (Oryza sativa) pollen tube germination, indicating that rice and Arabidopsis may have a conserved Rop/Rac mediated signaling pathway in regulating pollen tube growth. However, the Rop/Rac activated by the rice pollen specific RopGEFs remains to be identified. Here we demonstrated a Rop/Rac gene, OsRacB, co-expressed with the mature pollen expressed OsRopGEF2/3/6/8. The knockout mutants were normal in anther and pollen development but defective in the pollen grain germination, suggesting a specific and non-redundant role of OsRacB in the mature pollen. We further demonstrated that OsRacB is directly activated by the pollen specific expressing OsRopGEFs in vitro. Together with the previous study, we establish a RopGEF-Rop/Rac regulon which plays essential roles in rice pollen grain germination. Our data encourage further identification of the upstream and downstream players of RopGEF-Rop/Rac signaling in pollen germination and have agricultural implications for breeding robust seed yielding cultivars.


Subject(s)
Arabidopsis , Monomeric GTP-Binding Proteins , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Monomeric GTP-Binding Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
12.
Phys Sportsmed ; 50(5): 369-377, 2022 10.
Article in English | MEDLINE | ID: mdl-34176444

ABSTRACT

BACKGROUND: Shin splint is one of the most common sports injuries after strenuous exercise. Kinesiology taping (KT) is a popular noninvasive remedy used in sports-related disorders, with the potential effects of relieving pain, facilitating proprioception, modulating muscle activation and correcting abnormal movement patterns. However, the exact efficacy of KT on shin splints is still unknown, and previous findings are inconsistent. Hence, this study aimed to conduct a systematic review to evaluate the current status of relevant evidence on its efficacy. METHODS: The review was performed according to the PRISMA guidelines, and a systematic search of the literature was conducted in December 2020. Electronic databases, Embase, Scopus, Medline, Web of Science, PubMed and Biomed Central were searched for the identification of pertinent studies with pre-defined key terms on shin splints and KT. RESULTS: Four studies with a total sample size of 141 participants were included and analyzed. Two studies had within-subject designs, whereas the other two were randomized clinical trials. Although the positive results of KT were reported by the studies, methodological quality varied from poor to moderate according to the Physiotherapy Evidence Database Scale or Non-Randomized Studies-of Interventions. CONCLUSION: In conclusion, this review revealed that the efficacy of KT on shin splints remains not clear. Evidence that supports its effectiveness in individuals with shin splints is currently limited. Further studies with good methodological quality and study design are warranted.


Subject(s)
Athletic Injuries , Athletic Tape , Medial Tibial Stress Syndrome , Humans , Physical Therapy Modalities , Proprioception
13.
Angew Chem Int Ed Engl ; 61(1): e202110158, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34734453

ABSTRACT

Urea, an agricultural fertilizer, nourishes humanity. The century-old Bosch-Meiser process provides the world's urea. It is multi-step, consumes enormous amounts of non-renewable energy, and has a large CO2 footprint. Thus, developing an eco-friendly synthesis for urea is a priority. Herein we report a single-step Pd/LTA-3A catalyzed synthesis of urea from CO2 and NH3 under ambient conditions powered solely by solar energy. Pd nanoparticles serve the dual function of catalyzing the dissociation of NH3 and providing the photothermal driving force for urea formation, while the absorption capacity of LTA-3A removes by-product H2 O to shift the equilibrium towards urea production. The solar urea conversion rate from NH3 and CO2 is 87 µmol g-1 h-1 . This advance represents a first step towards the use of solar energy in urea production. It provides insights into green fertilizer production, and inspires the vision of sustainable, modular plants for distributed production of urea on farms.

14.
Neuroscience ; 479: 60-69, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34710538

ABSTRACT

The disorder of the conditioned pain modulation (CPM) system is one of the main causes of pain perception in individuals. High-definition transcranial direct current stimulation (HD-tDCS) targeting specific brain areas was indicated to have an analgesic effect possibly by activating the endogenous pain inhibition pathway evident in CPM. However, discrepancies were found in previous limited studies of varied homogeneity and quality. Therefore, the present study applied 2 mA HD-tDCS (20 min) in the left primary motor cortex (M1) among 35 healthy adults with a blinded crossover study design, to investigate its effectiveness on optimizing the analgesic effect in healthy individuals through assessing changes of the CPM. The univariate and multivariate general linear models were used to evaluate the intervention effect between-group on the Δ-value (after-intervention minus before-intervention) during CPM (primary outcome), pressure pain threshold (PPT), and cold pressure threshold (CPT) (secondary outcome), respectively. A significant between-group difference in Δ-CPM was found for active stimulation. HD-tDCS significantly improved the analgesic efficiency of Δ-CPM, compared with the sham control, after adjusting the confounding factors including age, gender, psychological status, as well as the sequence effect. The changes of CPM were positively correlated with the total physical activity volume. In conclusion, our findings provide evidence support to the effectiveness of HD-tDCS on endogenous pain modulation among healthy adults. Further studies are required to explore the analgesic effect of tDCS among patients with chronic pain, thereby facilitating optimal chronic pain management.


Subject(s)
Chronic Pain , Motor Cortex , Transcranial Direct Current Stimulation , Adult , Cross-Over Studies , Humans , Pain Threshold
15.
Foods ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34441621

ABSTRACT

Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.

16.
Environ Sci Pollut Res Int ; 28(41): 58755-58767, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34120278

ABSTRACT

Excess nitrogen input into water bodies can cause eutrophication and affect the community structure and abundance of the nitrogen-transforming microorganisms; thus, it is essential to remove nitrogen from eutrophic water bodies. Aquatic plants can facilitate the growth of rhizosphere microorganisms. This study investigated the impact of ammonium pollution on the anammox and denitrifying bacteria in the rhizosphere of a cultivated submerged macrophyte, Potamogeton crispus (P. crispus) by adding three different concentrations of slow-release urea (0, 400, 600 mg per kg sediment) to the sediment to simulate different levels of nitrogen pollution in the lake. Results showed that the ammonium concentrations in the interstitial water under three pollution treatments were significantly different, but the nitrate concentration remained stable. The abundance of anammox 16S rRNA and nitrite reductase (nirS) gene in rhizosphere sediments exhibited no significant differences under the three pollution conditions. The increase in the nitrogen pollution levels did not significantly affect the growth of anammox bacteria and nirS denitrifying bacteria (denitrifiers). The change trend of the abundance ratio of (anammox 16S rRNA)/nirS in different nitrogen treatment groups on the same sampling date was very close, indicating that this ratio was not affected by ammonium pollution levels when P. crispus existed. The redundancy analysis showed that there was a positive correlation between the abundance of anammox 16S rRNA and nirS gene and that the abundance of these bacteria was significantly affected by the mole ratio of NH4+/NO3-. This study reveals that submerged plants weaken the environmental changes caused by ammonia pollution in the rhizosphere, thereby avoiding strong fluctuation of anammox bacteria and nirS denitrifiers.


Subject(s)
Ammonium Compounds , Rhizosphere , Bacteria/genetics , Geologic Sediments , Nitrite Reductases/genetics , Nitrogen , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Biomaterials ; 275: 120858, 2021 08.
Article in English | MEDLINE | ID: mdl-34044257

ABSTRACT

The increasing number of infections caused by multi-drug resistance (MDR) bacteria is an omen of a new global challenge. As one of the countermeasures under development, antimicrobial peptides (AMPs) and AMP mimics have emerged as a new family of antimicrobial agents with high potential, due to their low resistance generation rate and effectiveness against MDR bacterial strains resulted from their membrane-disrupting mechanism of action. However, most reported AMPs and AMP mimics have facially amphiphilic structures, which may lead to undesired self-aggregation and non-specific binding, as well as increased cytotoxicity toward mammalian cells, all of which put significant limits on their applications. Here, we report an oligomer with the size of short AMPs, with both hydrophobic carbon chain and cationic groups placed on its backbone, giving an alternatingly amphiphilic structure that brings better selectivity between mammalian and bacterial cell membranes. In addition, the oligomer shows affinity toward DNA, thus it can utilize bacterial DNA located in the vulnerable nucleoid as the second drug target. Benefiting from these designs, the oligomer shows higher therapeutic index and synergistic effect with other antibiotics, while its low resistance generation rate and effectiveness on multi-drug resistant bacterial strains can be maintained. We demonstrate that this alternatingly amphiphilic, DNA-binding oligomer is not only resistance-resistant, but is also able to selectively eliminate bacteria at the presence of mammalian cells. Importantly, the oligomer exhibits good in vivo activity: it cleans all bacteria on Caenorhabditis elegans without causing apparent toxicity, and significantly improves the survival rate of mice with severely infected wounds in a mice excision wound model study.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Mice , Microbial Sensitivity Tests
18.
Sci Rep ; 11(1): 9052, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907301

ABSTRACT

Recently, we established silicone oil-induced ocular hypertension (SOHU) mouse model with significant glaucomatous neurodegeneration. Here we characterize two additional variations of this model that simulate two distinct glaucoma types. The first is a chronic model produced by high frequency (HF) pupillary dilation after SO-induced pupillary block, which shows sustained moderate IOP elevation and corresponding slow, mild glaucomatous neurodegeneration. We also demonstrate that although SO removal quickly returns IOP to normal, the glaucomatous neurodegeneration continues to advance to a similar degree as in the HF group without SO removal. The second, an acute model created by no pupillary dilation (ND), shows a greatly elevated IOP and severe inner retina degeneration at an early time point. Therefore, by a straightforward dilation scheme, we extend our original SOHU model to recapitulate phenotypes of two major glaucoma forms, which will be invaluable for selecting neuroprotectants and elucidating their molecular mechanisms.


Subject(s)
Disease Models, Animal , Glaucoma/pathology , Ocular Hypertension/physiopathology , Retinal Degeneration/pathology , Retinal Ganglion Cells/pathology , Silicone Oils/toxicity , Acute Disease , Animals , Female , Glaucoma/chemically induced , Intraocular Pressure , Male , Mice , Mice, Inbred C57BL , Ocular Hypertension/chemically induced , Retinal Degeneration/chemically induced , Retinal Ganglion Cells/drug effects , Silicone Oils/administration & dosage
19.
JMIR Serious Games ; 9(1): e20916, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33759795

ABSTRACT

BACKGROUND: The use of virtual reality is popular in clinical rehabilitation, but the effects of using commercial virtual reality games in patients with stroke have been mixed. OBJECTIVE: We developed a depth camera-based, task-specific virtual reality game, Stomp Joy, for poststroke rehabilitation of the lower extremities. This study aims to assess its feasibility and clinical efficacy. METHODS: We carried out a feasibility test for Stomp Joy within representative user groups. Then, a clinical efficacy experiment was performed with a randomized controlled trial, in which 22 patients with stroke received 10 sessions (2 weeks) of conventional physical therapy only (control group) or conventional physical therapy plus 30 minutes of the Stomp Joy intervention (experimental group) in the clinic. The Fugl-Meyer Assessment for Lower Extremity (FMA-LE), Modified Barthel Index (MBI), Berg Balance Scale (BBS) score, single-leg stance (SLS) time, dropout rate, and adverse effects were recorded. RESULTS: This feasibility test showed that Stomp Joy improved interest, pressure, perceived competence, value, and effort using the Intrinsic Motivation Inventory. The clinical efficacy trial showed a significant time-group interaction effect for the FMA-LE (P=.006), MBI (P=.001), BBS (P=.004), and SLS time (P=.001). A significant time effect was found for the FMA-LE (P=.001), MBI (P<.001), BBS (P<.001), and SLS time (P=.03). These indicated an improvement in lower extremity motor ability, basic activities of daily living, balance ability, and single-leg stance time in both groups after 2 weeks of the intervention. However, no significant group effects were found for the FMA-LE (P=.06), MBI (P=.76), and BBS (P=.38), while a significant group interaction was detected for SLS time (P<.001). These results indicated that the experimental group significantly improved more in SLS time than did the control group. During the study, 2 dropouts, including 1 participant who fell, were reported. CONCLUSIONS: Stomp Joy is an effective depth camera-based virtual reality game for replacing part of conventional physiotherapy, achieving equally effective improvement in lower extremity function among stroke survivors. High-powered randomized controlled studies are now needed before recommending the routine use of Stomp Joy in order to confirm these findings by recruiting a large sample size.

20.
Front Neurol ; 12: 608188, 2021.
Article in English | MEDLINE | ID: mdl-33763012

ABSTRACT

Background: Screening for post-stroke cognitive impairment (PSCI) is necessary because stroke increases the incidence of and accelerates premorbid cognitive decline. The Quick Mild Cognitive Impairment (Qmci) screen is a short, reliable and accurate cognitive screening instrument but is not yet validated in PSCI. We compared the diagnostic accuracy of a Chinese version of the Qmci screen (Qmci-CN) compared with the widely-used Chinese versions of the Montreal Cognitive Assessment (MoCA-CN) and Mini-Mental State Examination (MMSE-CN). Methods: We recruited 34 patients who had recovered from a stroke in rehabilitation unit clinics in 2 university hospitals in China: 11 with post-stroke dementia (PSD), 15 with post-stroke cognitive impairment no dementia (PSCIND), and 8 with normal cognition (NC). Classification was made based on clinician assessment supported by a neuropsychological battery, independent of the screening test scores. The Qmci-CN, MoCA-CN, and MMSE-CN screens were administered randomly by a trained rater, blind to the diagnosis. Results: The mean age of the sample was 63 ± 13 years and 61.8% were male. The Qmci-CN had statistically similar diagnostic accuracy in differentiating PSD from NC, an area under the curve (AUC) of 0.94 compared to 0.99 for the MoCA-CN (p = 0.237) and 0.99 for the MMSE-CN (p = 0.293). The Qmci-CN (AUC 0.91), MoCA-CN (AUC 0.94), and MMSE-CN (AUC 0.79) also had statistically similar accuracy in separating PSD from PSCIND. The MoCA-CN more accurately distinguished between PSCIND and normal cognition than the Qmci-CN (p = 0.015). Compared to the MoCA-CN, the administration times of the Qmci-CN (329s vs. 611s, respectively, p < 0.0001) and MMSE-CN (280 vs. 611s, respectively, p < 0.0001) were significantly shorter. Conclusion: The Qmci-CN is accurate in identifying PSD and separating PSD from PSCIND in patients post-stroke following rehabilitation and is comparable to the widely-used MoCA-CN, albeit with a significantly shorter administration time. The Qmci-CN had relatively poor accuracy in identifying PSCIND from NC and hence may lack accuracy for certain subgroups. However, given the small sample size, the study is under-powered to show superiority of one instrument over another. Further study is needed to confirm these findings in a larger sample size and in other settings (countries and languages).

SELECTION OF CITATIONS
SEARCH DETAIL
...