Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
Oncol Lett ; 28(3): 410, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988447

ABSTRACT

Advanced liver cancer is the most common malignant tumor in the elderly, but it also occurs in young people in areas where hepatitis B virus is prevalent. The aim of the present study was to assess the efficacy of systemic antitumor therapy in young patients with advanced liver cancer and investigate the influencing factors. The baseline demographic and clinical data of 38 young patients (≤35 years old) with liver cancer were collected as group A and that of 79 elderly patients (≥55 years old) with liver cancer were collected as group B. There were no significant between-group differences regarding the proportion of patients with increased serum aspartate aminotransferase, low serum albumin, increased α-fetoprotein (AFP) and high Child-Pugh score. The median (m)PFS time in groups A and B was 3.9 and 8.3 months, respectively [hazard ratio (HR), 1.702; P=0.009]. The mOS in group A (17.6 months) was 12.4 months shorter than that in group B (HR, 1.799; P=0.010). In the subgroup analysis, male sex [HR, 1.73; 95% confidence interval (CI), 1.07-2.79], pathological diagnosis (HR, 1.79; 95% CI, 1.10-2.91), previous surgical treatment (HR, 2.16; 95% CI, 1.18-3.95), no tumor thrombus (HR, 2.45; 95% CI, 1.22-4.93), increased alanine aminotransferase (HR, 2.23; 95% CI, 1.07-4.65), increased aspartate aminotransferase (HR, 3.22; 95% CI, 1.62-6.39), normal total bilirubin (HR, 1.77; 95% CI, 1.09-2.87) and increased AFP (HR, 2.02; 95% CI, 1.19-3.41) were associated with shorter survival time in group A compared with those in group B (P<0.05). Group A also had a higher incidence of hyper-progressive disease (HPD) (31.6 vs. 3.8%; P<0.001). HPD was a risk factor for advanced liver cancer (HR, 4.530; 95% CI, 2.251-9.115; P<0.001]. In conclusion, the efficacy of systemic antitumor therapy in young patients was poorer compared with that in elderly patients. Young patients with liver cancer had a high HBV infection rate and were prone to HPD.

2.
J Glob Health ; 14: 04109, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991211

ABSTRACT

Background: Preterm birth and low birth weight (PBLBW), recognised globally as primary contributors to infant mortality in children under five, have not been sufficiently investigated in terms of their worldwide impact. In this study we aimed to thoroughly evaluate the contemporary trends in disease burden attributable to PBLBW. Methods: We analysed data from 204 countries and territories between 1990-2019, as sourced from the 2019 Global Burden of Disease Study. We analysed the global incidence of mortality and disability-adjusted life years (DALYs) associated with PBLBW, stratified by age, gender, year, and geographic location, alongside the socio-demographic index (SDI). We calculated the annual percentage changes to evaluate the dynamic trends over time. We employed a generalised linear model and scrutinised the relationship between the SDI and the disease burden attributed to PBLBW. Results: In 2019, the global age-standardised rate of deaths and DALYs related to PBLBW showed significant declines. Over the period 1990-2019, both death and DALY rates displayed substantial downward trends, with similar change trends observed for both females and males. Age-specific ratios revealed a decrease in PBLBW-related deaths and DALYs with increasing age, primarily during the neonatal stages (zero to 27 days). The leading three causes of PBLBW-related DALYs in 2019 were neonatal disorders, lower respiratory infections, and sudden infant death syndrome. Furthermore, the association between SDI and PBLBW-related DALYs indicated that the age-standardised DALY rates in 204 countries and territories worldwide were negatively correlated with SDI in 2019. From 1990 to 2019, the age-standardised DALY rates decreased linearly in most regions, except sub-Saharan Africa. Conclusions: The persistent global burden of disease associated with PBLBW is particularly pronounced in neonates aged less than 28 days and in regions with low SDI. In this study, we highlighted the critical need for tailored interventions aimed at mitigating the detrimental effects of PBLBW to attain specific sustainable development goals, particularly those centred on enhancing child survival and overall well-being.


Subject(s)
Disability-Adjusted Life Years , Global Burden of Disease , Global Health , Infant Mortality , Infant, Low Birth Weight , Premature Birth , Humans , Global Burden of Disease/trends , Female , Infant, Newborn , Male , Infant , Premature Birth/epidemiology , Global Health/statistics & numerical data , Infant Mortality/trends , Child, Preschool
3.
J Nanobiotechnology ; 22(1): 378, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943185

ABSTRACT

Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.


Subject(s)
Heart Valves , Hydrogels , Rats, Sprague-Dawley , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Animals , Tissue Scaffolds/chemistry , Anisotropy , Rats , Hydrogels/chemistry , Biocompatible Materials/chemistry , Heart Valve Prosthesis , Polyesters/chemistry , Cells, Cultured , Humans , Extracellular Matrix/chemistry , Male
4.
Int J Antimicrob Agents ; 64(2): 107252, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908534

ABSTRACT

OBJECTIVES: The study aimed to develop a genotypic antimicrobial resistance testing method for Klebsiella pneumoniae using metagenomic sequencing data. METHODS: We utilized Lasso regression on assembled genomes to identify genetic resistance determinants for six antibiotics (Gentamicin, Tobramycin, Imipenem, Meropenem, Ceftazidime, Trimethoprim/Sulfamethoxazole). The genetic features were weighted, grouped into clusters to establish classifier models. Origin species of detected antibiotic resistant gene (ARG) was determined by novel strategy integrating "possible species," "gene copy number calculation" and "species-specific kmers." The performance of the method was evaluated on retrospective case studies. RESULTS: Our study employed machine learning on 3928 K. pneumoniae isolates, yielding stable models with AUCs > 0.9 for various antibiotics. GenseqAMR, a read-based software, exhibited high accuracy (AUC 0.926-0.956) for short-read datasets. The integration of a species-specific kmer strategy significantly improved ARG-species attribution to an average accuracy of 96.67%. In a retrospective study of 191 K. pneumoniae-positive clinical specimens (0.68-93.39% genome coverage), GenseqAMR predicted 84.23% of AST results on average. It demonstrated 88.76-96.26% accuracy for resistance prediction, offering genotypic AST results with a shorter turnaround time (mean ± SD: 18.34 ± 0.87 hours) than traditional culture-based AST (60.15 ± 21.58 hours). Furthermore, a retrospective clinical case study involving 63 cases showed that GenseqAMR could lead to changes in clinical treatment for 24 (38.10%) cases, with 95.83% (23/24) of these changes deemed beneficial. CONCLUSIONS: In conclusion, GenseqAMR is a promising tool for quick and accurate AMR prediction in Klebsiella pneumoniae, with the potential to improve patient outcomes through timely adjustments in antibiotic treatment.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Metagenomics , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Metagenomics/methods , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial/genetics , Machine Learning
5.
Biotechnol J ; 19(5): e2300676, 2024 May.
Article in English | MEDLINE | ID: mdl-38730523

ABSTRACT

Genetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing. Additionally, prime editing does not require a precisely positioned protospacer adjacent motif (PAM) sequence, which offers flexible target and more precise genomic editing. Here we detail a novel construction of a prime editing extended guide RNA (pegRNA) to target mutated leptin receptors in B6.BKS(D)-Leprdb/J mice (db/db mice). The pegRNA was then injected into the flexor digitorum brevis (FDB) muscle of db/db mice to demonstrate in vivo efficacy, which resulted in pegRNA mediated base transversion at endogenous base transversion. Genomic DNA sequencing confirmed that prime editing could correct the mutation of leptin receptor gene in db/db mice. Furthermore, prime editing treated skeletal muscle exhibited enhanced leptin receptor signals. Thus, the current study showed in vivo efficacy of prime editing to correct mutant protein and rescue the physiology associated with functional protein.


Subject(s)
Gene Editing , Receptors, Leptin , Animals , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Gene Editing/methods , Mice , Muscle, Skeletal/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Mutation , CRISPR-Cas Systems/genetics , Mice, Inbred C57BL
6.
Cancer Lett ; 591: 216883, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615929

ABSTRACT

High expression of programmed cell death protein 1 (PD-1), a typical immune checkpoint, results in dysfunction of T cells in tumor microenvironment. Antibodies and inhibitors against PD-1 or its ligand (PD-L1) have been widely used in various malignant tumors. However, the mechanisms by which PD-1 is regulated are not fully understood. Here, we report a mechanism of PD-1 degradation triggered by d-mannose and the universality of this mechanism in anti-tumor immunity. We show that d-mannose inactivates GSK3ß via promoting phosphorylation of GSK3ß at Ser9, thereby leading to TFE3 translocation to nucleus and subsequent PD-1 proteolysis induced by enhanced lysosome biogenesis. Notably, combination of d-mannose and PD-1 blockade exhibits remarkable tumor growth suppression attributed to elevated cytotoxicity activity of T cells in vivo. Furthermore, d-mannose treatment dramatically improves the therapeutic efficacy of MEK inhibitor (MEKi) trametinib in vivo. Our findings unveil a universally unrecognized anti-tumor mechanism of d-mannose by destabilizing PD-1 and provide strategies to enhance the efficacy of both immune checkpoint blockade (ICB) and MEKi -based therapies.


Subject(s)
Lysosomes , Mannose , Programmed Cell Death 1 Receptor , T-Lymphocytes , Programmed Cell Death 1 Receptor/metabolism , Lysosomes/metabolism , Animals , Humans , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Mannose/pharmacology , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Pyrimidinones/pharmacology , Phosphorylation , Pyridones/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mice, Inbred C57BL , Proteolysis , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism
7.
Front Microbiol ; 15: 1382639, 2024.
Article in English | MEDLINE | ID: mdl-38577686

ABSTRACT

Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1ß, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.

8.
Clin Pediatr (Phila) ; : 99228241238510, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515070

ABSTRACT

This study aimed to investigate the reference values for serum uric acid (SUA) levels and their association with overweight/obese in children. We conducted a retrospective analysis of 8522 participants, including 6227 normal weight children, aged 2 to 18 years in China. Among normal children, SUA levels increased with age, showing significant sex differences in children over 10 years. Age-specific and sex-specific 95% reference intervals for SUA levels were established. Furthermore, we observed that the percentage of overweight/obesity significantly increased as SUA quartiles rose. Elevated SUA levels were associated with a high odds ratio (OR) for overweight/obesity (OR = 4.45, 95% confidence interval = 3.33, 5.93). We propose that the 97.5th percentile is a suitable value for defining elevated SUA levels, and there is a positive correlation between SUA levels and the presence of overweight or obesity.

9.
Front Med (Lausanne) ; 11: 1297457, 2024.
Article in English | MEDLINE | ID: mdl-38420355

ABSTRACT

Background: Wilson's disease (WD) is not an uncommon genetic disease in clinical practice. However, the current WD therapies have limitations. The effectiveness of stem cell therapy in treating WD has yet to be verified, although a few animal studies have shown that stem cell transplantation could partially correct the abnormal metabolic phenotype of WD. In this case report, we present the therapeutic effect of human amniotic fluid containing stem cells in one WD patient. Case presentation: A 22-year-old Chinese woman was diagnosed with WD 1 year ago in 2019. The available drugs were not effective in managing the progressive neuropsychiatric symptoms. We treated the patient with pre-cultured human amniotic fluid containing stem cells. Amniotic fluid was collected from pregnant women who underwent induced labor at a gestational age of 19-26 weeks, and then, the fluid was cultured for 2 h to allow stem cell expansion. Cultured amniotic fluid that contained amniotic fluid derived stem cells (AFSC) in the range of approximately 2.8-5.5 × 104/ml was administrated by IV infusion at a rate of 50-70 drops per minute after filtration with a 300-mu nylon mesh. Before the infusion of amniotic fluid, low-molecular-weight heparin and dexamethasone were successively administrated. The patient received a total of 12 applications of amniotic fluid from different pregnant women, and the treatment interval depended on the availability of amniotic fluid. The neuropsychiatric symptoms gradually improved after the stem cell treatment. Dystonia, which included tremor, chorea, dysphagia, dysarthria, and drooling, almost disappeared after 1.5 years of follow-up. The Unified Wilson's Disease Rating Scale score of the patient decreased from 72 to 10. Brain magnetic resonance imaging (MRI) showed a reduction in the lesion area and alleviation of damage in the central nervous system, along with a partial recovery of the lesion to the normal condition. The serum ceruloplasmin level was elevated from undetectable to 30.8 mg/L, and the 24-h urinary copper excretion decreased from 171 to 37 µg. In addition, amniotic fluid transplantation also alleviates hematopoietic disorders. There were no adverse reactions during or after amniotic fluid administration. Conclusion: Amniotic fluid administration, through which stem cells were infused, significantly improves the clinical outcomes in the WD patient, and the finding may provide a novel approach for managing WD effectively.

10.
PLoS Pathog ; 20(2): e1011999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306394

ABSTRACT

Hepatitis B virus (HBV) chronically infects 296 million people worldwide, posing a major global health threat. Export of HBV RNAs from the nucleus to the cytoplasm is indispensable for viral protein translation and genome replication, however the mechanisms regulating this critical process remain largely elusive. Here, we identify a key host factor embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) that binds HBV RNAs and controls their nuclear export. Using an unbiased quantitative proteomics screen, we demonstrate direct binding of ELAVL1 to the HBV pregenomic RNA (pgRNA). ELAVL1 knockdown inhibits HBV RNAs posttranscriptional regulation and suppresses viral replication. Further mechanistic studies reveal ELAVL1 recruits the nuclear export receptor CRM1 through ANP32A and ANP32B to transport HBV RNAs to the cytoplasm via specific AU-rich elements, which can be targeted by a compound CMLD-2. Moreover, ELAVL1 protects HBV RNAs from DIS3+RRP6+ RNA exosome mediated nuclear RNA degradation. Notably, we find HBV core protein is dispensable for HBV RNA-CRM1 interaction and nuclear export. Our results unveil ELAVL1 as a crucial host factor that regulates HBV RNAs stability and trafficking. By orchestrating viral RNA nuclear export, ELAVL1 is indispensable for the HBV life cycle. Our study highlights a virus-host interaction that may be exploited as a new therapeutic target against chronic hepatitis B.


Subject(s)
Hepatitis B virus , RNA, Viral , Animals , Humans , Hepatitis B virus/metabolism , Active Transport, Cell Nucleus , RNA, Viral/genetics , RNA, Viral/metabolism , Drosophila/genetics , Virus Replication/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism
11.
Front Pharmacol ; 15: 1320578, 2024.
Article in English | MEDLINE | ID: mdl-38410132

ABSTRACT

Introduction: Rheumatoid arthritis (RA) is a globally challenging and refractory autoimmune disease, constituting a serious menace to human health. RA is characterized by recurrent pain and is difficult to resolve, necessitating prolonged medication for control. Yishen Tongbi decoction is a traditional Chinese herbal compound prescribed for treating RA. We have completed a 3-year RCT study that confirmed the clinical efficacy of Yishen Tongbi decoction for RA. Notably, we observed a faster clinical remission rate compared to MTX by week 4 of treatment. In our forthcoming study, we intend to conduct a comprehensive assessment of the efficacy and safety of Yishen Tongbi decoction in the real-world treatment of RA through a prospective study. Methods and analysis: This prospective, multicenter, real-world observational study will be conducted at two designated centers in China from October 2023 to August 2025. The study will include 324 patients with active rheumatoid arthritis. One group will receive Yishen Tongbi decoction combined with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs). The other group will receive standard treatment. Standard treatment can be further divided into subgroups: csDMARDs, targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs), and biologic disease-modifying antirheumatic drugs (bDMARDs). In each group, the number of tender joints, number of swollen joints, pain score, patient global assessment, physician global assessment, disease activity index (DAS28-ESR or DAS28-CRP), clinical disease activity index (cDAI), simplified disease activity index (sDAI) and relevant laboratory data will be compared. Clinical indicators and disease activity of the patients will be assessed at baseline, week 4 and week 12 after the initiation of treatment. The primary outcome will be the American College of Rheumatology 20% improvement criteria (ACR20) attainment rate among patients at week 12 after treatment. Every adverse event will be reported. Ethics and dissemination: This study has been approved by the Ethics Committee of the first affiliated Hospital of Guangzhou University of traditional Chinese Medicine (NO.K-2023-009). The results of the study will be published in national and international peer-reviewed journals and at scientific conferences. The researchers will inform participants and other RA patients of the results through health education. Clinical Trial Registration: https://www.chictr.org.cn/index.html, identifier ChiCTR2300076073.

12.
Int J Biol Macromol ; 261(Pt 1): 129590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266859

ABSTRACT

As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.


Subject(s)
Abrus , Gastrointestinal Microbiome , Mice , Animals , Butyric Acid , Immunosuppression Therapy , Intestines , Polysaccharides/pharmacology
13.
Adv Mater ; 36(14): e2310483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198600

ABSTRACT

Electrical stimulation (ES) has shown beneficial effects in repairing injured tissues. However, current ES techniques that use tissue-traversing leads and bulky external power suppliers have significant limitations in translational medicine. Hence, exploring noninvasive in vivo ES to provide controllable electrical cues in tissue engineering is an imminent necessity. Herein, a conductive hydrogel with in situ electrical generation capability as a biodegradable regeneration scaffold and wireless ES platform for spinal cord injury (SCI) repair is demonstrated. When a soft insulated metal plate is placed on top of the injury site as a wireless power transmitter, the conductive hydrogel implanted at the injury site can serve as a wireless power receiver, and the capacitive coupling between the receiver and transmitter can generate an alternating current in the hydrogel scaffold owing to electrostatic induction effect. In a complete transection model of SCI rats, the implanted conductive hydrogels with capacitive-coupling in situ ES enhance functional recovery and neural tissue repair by promoting remyelination, accelerating axon regeneration, and facilitating endogenous neural stem cell differentiation. This facile wireless-powered electroactive-hydrogel strategy thus offers on-demand in vivo ES with an adjustable timeline, duration, and strength and holds great promise in translational medicine.


Subject(s)
Nerve Regeneration , Spinal Cord Injuries , Rats , Animals , Axons , Hydrogels/pharmacology , Spinal Cord Injuries/therapy , Electric Stimulation , Tissue Scaffolds
14.
Nutr Metab (Lond) ; 21(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167476

ABSTRACT

BACKGROUND: D-mannose, an epimer of glucose, which is abundant in some fruits, such as cranberry, has been previously reported to inhibit urinary tract infection. In recent years, the potential function of D-mannose has been broadened into the regulation of other inflammation diseases and cancer. It was reported that D-mannose can increase reactive oxygen species (ROS) production, while IDH2 is important for the generation of NADPH, the crucial reducing factor. These findings prompted us to determine whether D-mannose can regulate IDH2 and IDH2-mediated NADPH production in tumor. METHODS: The breast cancer cell line MDA-MB-231 was cultured and treated with 100mM D-mannose. IDH2 expression was detected by Western Blot and qRT-PCR. RNA-seq was conducted to identify the differentially expressed genes. BioGRID database was used to find the IDH2 interactors. Tumor cells were collected to measure the NADPH production using the NADP+/NADPH detection Kit. Colony formation assay and CCK-8 assay were conducted to evaluate the proliferation of cells. RESULTS: D-mannose can promote IDH2 protein degradation through ubiquitination-proteasome pathway. Mechanistically, D-mannose treatment upregulated the expression of an E3 ligase - RNF185, which can interact with IDH2 and promotes its proteasomal degradation. Consequently, IDH2-mediated NADPH production was inhibited by D-mannose, the proliferation of breast cancer cells was retarded, and the sensitivity to pro-oxidant of breast cancer cells was elevated. CONCLUSIONS: Our study demonstrated that D-mannose can degrade IDH2 and inhibit the production of NADPH to suppress the proliferation of breast cancer cells and render the breast cancer cells more sensitive to pro-oxidant treatment. Furthermore, we illustrated the E3 ligase RNF185 plays an important role in D-mannose-mediated proteasomal degradation of IDH2.

15.
PLoS One ; 19(1): e0292091, 2024.
Article in English | MEDLINE | ID: mdl-38277356

ABSTRACT

Many of the pathological consequences of chronic kidney disease can be attributed to an elevation in serum phosphate levels. Current therapies focused on decreasing intestinal phosphate absorption to treat hyperphosphatemia are inadequate. The most effective therapeutic strategy may be to target multiple absorptive pathways. In this study, the ability of a novel inhibitor of the intestinal sodium hydrogen exchanger 3 (NHE3), LY3304000, which inhibits paracellular, diffusional uptake of phosphate, to work in combination with an inhibitor of the active transporter, sodium dependent phosphate cotransporter 2b (NPT2b), LY3358966, was explored. LY3304000 modestly inhibited the acute uptake of phosphate into plasma of rats, while surprisingly, it doubled the rate of phosphate uptake in mice, an animal model dominated by NPT2b mediated acute phosphate uptake. In rats, LY3004000 and LY3358966 work in concert to inhibit acute phosphate uptake. On top of LY3358966, LY3304000 further decreased the acute uptake of phosphate into plasma. Studies measuring the recovery of radiolabeled phosphate in the intestine demonstrated LY3304000 and LY3358966 synergistically inhibited the absorption of phosphate in rats. We hypothesize the synergism is because the NHE3 inhibitor, LY3304000, has two opposing effects on intestinal phosphate absorption in rats, first it decreases diffusion mediated paracellular phosphate absorption, while second, it simultaneously increases phosphate absorption through the NPT2b pathway. NHE3 inhibition decreases proton export from enterocytes and raises the cell surface pH. In vitro, NPT2b mediated phosphate transport is increased at higher pHs. The increased NPT2b mediated transport induced by NHE3 inhibition is masked in rats which have relatively low levels of NPT2b mediated phosphate transport, by the more robust inhibition of diffusion mediated phosphate absorption. Thus, the inhibition of NPT2b mediated phosphate transport in rats in the presence of NHE3 inhibition has an effect that exceeds its effect in the absence of NHE3 inhibition, leading to the observed synergism on phosphate absorption between NPT2b and NHE3 inhibition.


Subject(s)
Phosphates , Renal Insufficiency, Chronic , Rats , Mice , Animals , Phosphates/metabolism , Sodium-Hydrogen Exchanger 3 , Rodentia , Intestinal Absorption , Renal Insufficiency, Chronic/metabolism , Sodium-Hydrogen Exchangers/metabolism
16.
Biopreserv Biobank ; 22(2): 139-145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37582272

ABSTRACT

Biobanking has become an increasingly important activity to provide resources for medical research support. In China, establishing and maintaining a biobank have been the latest trend in a research hospital. However, biobanking is still an emerging young field in terms of professionalization and professionalism. The development of professionalization in biobanking faces many challenges involving the development of skills, identities, norms, and values associated with becoming part of a professional group. Biobanking professionals (i.e., biobankers) are the most important factor and driving force toward professionalization in biobanking. To better understand biobankers' performance, needs, concerns, and career development, we conducted two comprehensive surveys among biobankers in China in 2019 and 2021, respectively. The questionnaires covered four major areas: (1) basic information and the status of biobankers; (2) job performance evaluation, salary, recognitions, rewards, and so on; (3) occupational training and career development; and (4) challenges and prospects and so on. The surveys revealed that most biobankers in China have positive working attitudes and a high desire for their future career development, but due to the uncertain evaluation mechanisms and promotion routes, etc., the participants were more optimistic about biobanking development compared to the biobanker's career development (77.0% and 57.4% respectively in 2021, p < 0.05). The biobankers expected more training opportunities and salary packages. Because biobankers are an integral factor and driving force to ensure the successful biobanking operation and advancement, the survey data analysis revealed interesting findings and references for the development of professionalism in biobanking. This survey will provide first-hand information to governments, biobank management teams, and the general public to further support, promote, or optimize (1) biobanking operation and sustainability, (2) biobankers' career development, (3) biobank management and quality control, and (4) strategic plans and approaches to establish a higher quality professional team of biobankers.


Subject(s)
Biological Specimen Banks , Biomedical Research , Humans , Professionalism , Surveys and Questionnaires , China
17.
Int J Gynaecol Obstet ; 164(2): 563-570, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37792887

ABSTRACT

OBJECTIVE: The present study aimed to investigate the effect of long-acting gonadotropin-releasing hormone agonist (GnRHa) long protocol on in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes of patients with repeated implantation failure (RIF). METHODS: The present study was carried out from June 1, 2016 to June 30, 2021. A total of 665 patients with RIF were enrolled into the study and classified by the ovarian stimulation protocols. The outcome parameters were compared in each group. In addition, we evaluated the expression of homeobox A10 (HOXA10), integrin ß3 and leukemia inhibitory factor (LIF) in endometrial tissues between groups by quantitative RT-PCR. RESULTS: Patients who received the long-acting GnRHa long protocol had significantly higher clinical pregnancy rates (58.0%, 41.7% and 39.9%, respectively; P = 0.008 and 0.003), implantation rates (38.1%, 30.3%, and 30.1%, respectively; P = 0.001 and <0.001) and live birth rates (50.3%, 36.3%, and 31.3%, respectively; P = 0.020 and 0.002) compared with the short-acting GnRHa long protocol and GnRH antagonist protocol. In addition, we found that long-acting GnRHa could improve the expression of HOXA10 (P < 0.05). CONCLUSION: The long-acting GnRHa long protocol could improve endometrial receptivity and IVF/ICSI clinical outcomes of RIF patients compared with the short-acting GnRHa long protocol and GnRH antagonist protocol.


Subject(s)
Gonadotropin-Releasing Hormone , Sperm Injections, Intracytoplasmic , Male , Pregnancy , Female , Humans , Semen , Fertilization in Vitro/methods , Pregnancy Rate , Ovulation Induction/methods , Hormone Antagonists , Retrospective Studies
18.
Genome Med ; 15(1): 106, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041146

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a notorious clinical pathogen and frequently carries various plasmids, which are the main carriers of antimicrobial resistance and virulence genes. In comparison to self-transmissible conjugative plasmids, mobilizable plasmids have received much less attention due to their defects in conjugative elements. However, the contribution of mobilizable plasmids to the horizontal transfer of antimicrobial resistance genes and virulence genes of K. pneumoniae remains unclear. In this study, the transfer, stability, and cargo genes of the mobilizable plasmids of K. pneumoniae were examined via genetic experiments and genomic analysis. METHODS: Carbapenem-resistant (CR) plasmid pHSKP2 and multidrug-resistant (MDR) plasmid pHSKP3 of K. pneumoniae HS11286, virulence plasmid pRJF293 of K. pneumoniae RJF293 were employed in conjugation assays to assess the transfer ability of mobilizable plasmids. Mimic mobilizable plasmids and genetically modified plasmids were constructed to confirm the cotransfer models. The plasmid morphology was evaluated through XbaI and S1 nuclease pulsed-field gel electrophoresis and/or complete genome sequencing. Mobilizable plasmid stability in transconjugants was analyzed via serial passage culture. In addition, in silico genome analysis of 3923 plasmids of 1194 completely sequenced K. pneumoniae was performed to investigate the distribution of the conjugative elements, the cargo genes, and the targets of the CRISPR-Cas system. The mobilizable MDR plasmid and virulence plasmid of K. pneumoniae were investigated, which carry oriT but lack other conjugative elements. RESULTS: Our results showed that mobilizable MDR and virulence plasmids carrying oriT but lacking the relaxase gene were able to cotransfer with a helper conjugative CR plasmid across various Klebsiella and Escherichia coli strains. The transfer and stability of mobilizable plasmids rather than conjugative plasmids were not interfered with by the CRISPR-Cas system of recipient strains. According to the in silico analysis, the mobilizable plasmids carry about twenty percent of acquired antimicrobial resistance genes and more than seventy-five percent of virulence genes in K. pneumoniae. CONCLUSIONS: Our work observed that a mobilizable MDR or virulence plasmid that carries oriT but lacks the relaxase genes transferred with the helper CR conjugative plasmid and mobilizable plasmids escaped from CRISPR-Cas defence and remained stable in recipients. These results highlight the threats of mobilizable plasmids as vital vehicles in the dissemination of antibiotic resistance and virulence genes in K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Escherichia coli/genetics , Carbapenems , beta-Lactamases/genetics
19.
Front Plant Sci ; 14: 1260856, 2023.
Article in English | MEDLINE | ID: mdl-37908839

ABSTRACT

Cupin_1 domain-containing protein (CDP) family, which is a member of the cupin superfamily with the most diverse functions in plants, has been found to be involved in hormone pathways that are closely related to rhizome sprouting (RS), a vital form of asexual reproduction in plants. Ma bamboo is a typical clumping bamboo, which mainly reproduces by RS. In this study, we identified and characterized 53 Dendrocalamus latiflorus CDP genes and divided them into seven subfamilies. Comparing the genetic structures among subfamilies showed a relatively conserved gene structure within each subfamily, and the number of cupin_1 domains affected the conservation among D. latiflorus CDP genes. Gene collinearity results showed that segmental duplication and tandem duplication both contributed to the expansion of D. latiflorus CDP genes, and lineage-specific gene duplication was an important factor influencing the evolution of CDP genes. Expression patterns showed that CDP genes generally had higher expression levels in germinating underground buds, indicating that they might play important roles in promoting shoot sprouting. Transcription factor binding site prediction and co-expression network analysis indicated that D. latiflorus CDPs were regulated by a large number of transcription factors, and collectively participated in rhizome buds and shoot development. This study significantly provided new insights into the evolutionary patterns and molecular functions of CDP genes, and laid a foundation for further studying the regulatory mechanisms of plant rhizome sprouting.

20.
Cell Rep ; 42(11): 113362, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37938970

ABSTRACT

Upregulation of FGL1 helps tumors escape from immune surveillance, and therapeutic antibodies targeting FGL1 have potential as another immune checkpoint inhibitor. However, the underlying mechanism of high FGL1 protein level in cancers is not well defined. Here, we report that FBXO38 interacts with and ubiquitylates FGL1 to negatively regulate its stability and to mediate cancer immune response. Depletion of FBXO38 markedly augments FGL1 abundance, not only suppressing CD8+ T cell infiltration and enhancing immune evasion of tumor but also increasing inflammation in mice. Importantly, we observe a negative correlation of FBXO38 with FGL1 and IL-6 in non-small cell lung cancer specimens. FGL1 and IL-6 levels positively correlate with TNM (tumor, lymph node, metastasis) stages, while FBXO38 and the infiltrating CD8+ T cells negatively correlate with TNM stages. Our study identifies a mechanism regulating FGL1 stability and a target to enhance the immunotherapy and suggests that the combination of anti-FGL1 and anti-IL-6 is a potential therapeutic strategy for cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Inflammation , Interleukin-6 , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL