Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Heliyon ; 10(12): e32889, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39005918

ABSTRACT

Osteocytes are terminally differentiated cells derived from osteoblasts and are deeply embedded within the bone matrix. They play a critical role in bone remodeling by generating a lacuno-canalicular network (LCN) and controlling the transport of nutrients. Due to the absence of blood vessels within the bone matrix, it is widely believed that osteocytes develop in a hypoxic environment. However, the mechanisms of osteocytogenesis and the role of oxygen sensing in this process remain unclear. Hypoxia-inducible factors (HIFs) are major transcriptional factors involved in oxygen sensing. Previous studies have shown that accumulation of HIFs in osteoblasts leads to abnormal bone remodeling, potentially linked with the alterations of the LCN network. Specifically, HIF-1α is hypothesized to play a more significant role in regulating bone remodeling compared to HIF-2α. Therefore, we investigated the functions of HIF-1α in dendrite formation and the establishment of the LCN network during osteocytogenesis. Immunostaining and scanning electron microscopy revealed that the E11 protein aggregates to form a ring structure that defines the site for dendrite initiation. This process is followed by activation of the ERM/RhoA pathway and recruitment of matrix metalloproteinase 14 (MMP14) to facilitate extracellular matrix degradation, enabling dendrite elongation. However, both hypoxic treatment and overexpression of HIF-1α impair ring formation, resulting in reduced ERM/RhoA activity and decreased matrix degradation capability. These findings suggest that abnormal HIF-1α activity in local areas could contribute to impaired LCN network formation and abnormal bone remodeling observed in bone diseases such as osteopenia and aging.

2.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910496

ABSTRACT

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Subject(s)
Heme Oxygenase-1 , Osteoarthritis , Osteoclasts , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoclasts/metabolism , Humans , Animals , Oxidative Stress , Cell Differentiation , Osteogenesis , Male , Mice , Reactive Oxygen Species/metabolism
3.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241254588, 2024.
Article in English | MEDLINE | ID: mdl-38758016

ABSTRACT

PURPOSE: The abnormal function and survival of chondrocytes result in articular cartilage failure, which may accelerate the onset and development of osteoarthritis (OA). This study is aimed to investigate the role of LINC01094 in chondrocyte apoptosis. METHODS: The viability and apoptosis of lipopolysaccharide (LPS)-induced chondrocytes were evaluated through CCK-8 assay and flow cytometry analysis, respectively. The expression levels of LINC01094, miR-577 and MTF1 were detected by qRT-PCR. Dual luciferase reporter tests were implemented for the verification of targeted relationships among them. Western blotting was employed to measure the levels of pro-apoptotic proteins (Caspase3 and Caspase9). RESULTS: The viability of LPS-induced chondrocytes was overtly promoted by loss of LINC01094 or miR-577 upregulation, but could be repressed via MTF1 overexpression. The opposite results were observed in apoptosis rate and the levels of Caspase3 and Caspase9. LINC01094 directly bound to miR-577, while MTF1 was verified to be modulated by miR-577. Both LINC01094 and MTF1 were at high levels, whereas miR-577 was at low level in OA synovial fluid and LPS-induced chondrocytes. Furthermore, the highly expressed miR-577 abolished the influences of MTF1 overexpression on LPS-induced chondrocytes. CONCLUSIONS: Silencing of LINC01094 represses the apoptosis of chondrocytes through upregulating miR-577 expression and downregulating MTF1 levels, providing a preliminary insight for the treatment of OA in the future.


Subject(s)
Apoptosis , Chondrocytes , MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Transcription Factors , Chondrocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factor MTF-1 , Cells, Cultured , Gene Knockdown Techniques , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Lipopolysaccharides
4.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38649157

ABSTRACT

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Subject(s)
Anilides , Indoles , Mesenchymal Stem Cells , Nanoparticles , Osteoarthritis , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers , Rats, Sprague-Dawley , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Rats , Injections, Intra-Articular , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Indoles/chemistry , Indoles/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Male , Drug Carriers/chemistry , Humans
6.
Cell Commun Signal ; 22(1): 160, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38439009

ABSTRACT

BACKGROUND: Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS: The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS: We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION: These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Female , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Vorinostat/pharmacology , Vorinostat/therapeutic use , Molecular Docking Simulation , Bone Resorption/drug therapy , Signal Transduction , Osteoporosis/drug therapy , Osteoporosis/etiology , Estrogens
7.
Arthritis Res Ther ; 26(1): 20, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218854

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS: Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS: Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1ß-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1ß-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS: ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Synoviocytes , Aged , Animals , Humans , Rats , ADAM Proteins/metabolism , ADAM Proteins/pharmacology , Arthritis, Rheumatoid/metabolism , Carrier Proteins/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , Inflammation/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Small Interfering/metabolism , Synoviocytes/metabolism
8.
Int Orthop ; 48(4): 971-981, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289379

ABSTRACT

PURPOSE: The value of computer navigation in total knee arthroplasty (TKA) for arthritic knees continues to be debated. The purpose of this study was to evaluate the value of navigated TKA associated with updated alignment philosophy. METHODS: This prospective randomized controlled trial enrolled 38 consecutive patients (76 knees) and were randomly assigned to both groups. The demographic data and perioperative data were recorded. The coronal plane alignment of the knee (CPAK) classification was used to classify knee alignment phenotypes. Radiographic outcomes were measured and subgroup analysis was further performed. Clinical outcomes were evaluated using patient-reported outcome measures (PROMs). Surgery-related complications were recorded. RESULTS: The distribution of CPAK phenotypes following constitutional aligned TKA was equivalent to the native cohort, whereas the mechanical aligned TKA dramatically altered the phenotype distribution from type I and type II to type V and type IV. Final implant positioning was different between groups, with constitutional aligned TKA having larger cTCA (P = .004), joint line obliquity (P = .006), joint line distance (P = .033) and smaller sFCA (P = .013). Subgroup analysis showed higher actual accuracy of component positioning was achieved in navigated TKA, especially in knees with deformity of > 10° (P < .05). Patients reported higher HSS score at three months postoperatively in constitutional aligned group (P = .002). One patient in navigated group suffered femoral pin site fracture caused by a minor trauma. CONCLUSION: Computer navigated TKA allows for restoration of constitutional alignment and minimizes soft tissue release, which when compared to mechanical alignment may be associated with superior early outcomes.


Subject(s)
Arthroplasty, Replacement, Knee , Femoral Fractures , Osteoarthritis, Knee , Surgery, Computer-Assisted , Humans , Arthroplasty, Replacement, Knee/adverse effects , Prospective Studies , Osteoarthritis, Knee/surgery , Knee Joint/diagnostic imaging , Knee Joint/surgery , Femoral Fractures/surgery , Retrospective Studies
9.
Endocr Rev ; 45(1): 95-124, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37459436

ABSTRACT

The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.


Subject(s)
Bone Resorption , Bone and Bones , Humans , Osteoblasts/physiology , Neurosecretory Systems , Homeostasis
10.
J Inflamm Res ; 16: 5613-5628, 2023.
Article in English | MEDLINE | ID: mdl-38046403

ABSTRACT

Purpose: The development of osteoarthritis (OA) has been linked to mechanical factors. Studies suggest that periodic mechanical stress (PMS) may be a factor contributing to cartilage repair and the onset of OA. Therefore, this study was designed to explore the effects and underlying mechanisms of PMS on OA development. Patients and Methods: Firstly, surgery and interleukin (IL)-1ß were used for the establishment of rat/cell models of OA, respectively. Subsequently, activating transcription factor (ATF) 3 expression was knocked down in OA rats, and OA chondrocytes were treated with different heights (0, 1, 2, 4, 8 cm) of PMS or si-ATF. Safranin O staining was used to observe the histological changes in the rat knee joint, and enzyme-linked immunosorbent assay (ELISA) was performed to detect levels of tumor necrosis factor (TNF)-α, IL-6, and IL-8 in vivo and in vitro. Further, the expression of extracellular matrix (ECM) proteins in the rat knee joint was assessed immunohistochemistry. Flow cytometry was used to evaluate chondrocyte apoptosis. Lastly, Western blot was performed to detect the expression of related proteins of the protein kinase B (Akt) signaling pathway and ECM. Results: The OA rat model was successfully constructed. Further experiments indicated that the knockdown of ATF3 not only alleviated joint swelling, pain, inflammatory response and pathological damage, but also promoted ECM synthesis and the phosphorylation of Akt in OA rats. In vitro experiments showed that PMS (4 cm) effectively inhibited cell apoptosis, decreased the levels of TNF-α, IL-6 and IL-8, promoted ECM synthesis, and activated the Akt signaling pathway in osteoarthritic chondrocytes. However, ATF3 overexpression reversed the positive effects of PMS on osteoarthritic chondrocytes. Conclusion: PMS can effectively inhibit the development of OA, and its protective effects may be attributed to the down-regulation of ATF3 expression and activation of the Akt signaling pathway.

11.
Elife ; 122023 11 06.
Article in English | MEDLINE | ID: mdl-37929702

ABSTRACT

Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Osteolysis , Zinc Finger Protein GLI1 , Animals , Humans , Mice , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , DNA/metabolism , Inflammation/metabolism , Methyltransferases/metabolism , Osteoclasts/metabolism , Osteolysis/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1238-1245, 2023 Oct 15.
Article in Chinese | MEDLINE | ID: mdl-37848319

ABSTRACT

Objective: To investigate the surgical technique and the short-term effectivenss of lateral unicompartmental knee arthroplasty (LUKA) through lateral approach in the treatment of valgus knee and to calculate the maximum value of the theoretical correction of knee valgus deformity. Methods: A retrospective analysis was performed on 16 patients (20 knees) who underwent LUKA and met the selection criteria between April 2021 and July 2022. There were 2 males and 14 females, aged 57-85 years (mean, 71.5 years). The disease duration ranged from 1 to 18 years, with an average of 11.9 years. Knee valgus was staged according to Ranawat classification, there were 6 knees of type Ⅰ, 13 knees of type Ⅱ, and 1 knee of type Ⅲ. All patients were assigned the expected correction value of genu valgus deformity by preoperative planning, including the correction value of lateral approach, intra-articular correction value, and residual knee valgus deformity value. The actual postoperative corrected values of the above indicators were recorded and the theoretical maximum correctable knee valgus deformity values were extrapolated. The operation time, intraoperative blood loss, incision length, hospital stay, hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), mechanical medial proximal tibia angle (mMPTA), joint line convergence angle (JLCA), posterior tibial slope (PTS), range of motion (ROM), Hospital for Special Surgery (HSS) score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were also recorded for effectiveness evaluation. Results: The patients' incision length averaged 13.83 cm, operation time averaged 85.8 minutes, intraoperative blood loss averaged 74.9 mL, and hospital stay averaged 6.7 days. None of the patients suffered any significant intraoperative neurological or vascular injuries. All patients were followed up 10-27 months, with a mean of 17.9 months. One patient with bilateral knee valgus deformities had intra-articular infection in the left knee at 1 month after operation and the remaining patients had no complication such as prosthesis loosening, dislocation, and infection. The ROM, HSS score, and WOMAC score of knee joint significantly improved at each time point after operation when compared to those before operation, and the indicators further improved with time after operation, the differences were all significant ( P<0.05). Imaging measurement showed that HKA, mLDFA, JLCA, and PTS significantly improved at 3 days after operation ( P<0.05) except for mMPTA ( P>0.05). Postoperative evaluation of the knee valgus deformity correction values showed that the actual intra-articular correction values ranged from 0.54° to 10.97°, with a mean of 3.84°. The postoperative residual knee valgus deformity values ranged from 0.42° to 5.30°, with a mean of 3.59°. The actual correction values of lateral approach ranged from 0.21° to 12.73°, with a mean of 4.26°. Conclusion: LUKA through lateral approach for knee valgus deformity can achieve good early effectiveness. Preoperative planning can help surgeons rationally allocate the correction value of knee valgus deformity, provide corresponding treatment strategies, and the maximum theoretical correction value of knee valgus deformity can reach 25°.


Subject(s)
Arthroplasty, Replacement, Knee , Osteoarthritis, Knee , Male , Female , Humans , Arthroplasty, Replacement, Knee/methods , Retrospective Studies , Blood Loss, Surgical , Osteoarthritis, Knee/surgery , Knee Joint/surgery
13.
J Orthop Surg Res ; 18(1): 670, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37691099

ABSTRACT

BACKGROUND: Osteoarthritis (OA), characterized by inflammation and articular cartilage degradation, is a prevalent arthritis among geriatric population. This paper was to scrutinize the novel mechanism of long noncoding RNA (lncRNA) NEAT1 in OA etiology. METHODS: A total of 10 OA patients and 10 normal individuals was included in this study. Cell model of OA was built in human normal chondrocytes induced by lipopolysaccharide (LPS). An OA Wistar rat model was established through intra-articular injection of L-cysteine and papain mixtures (proportion at 1:2) into the right knee. Quantitative reverse transcription-polymerase chain reaction was employed to ascertain the expression levels of NEAT1, microRNA (miR)-374b-5p and post-GPI attachment to protein 1 (PGAP1), while dual-luciferase reporter experiments were used for the validation of target relationship among them. Cell cycle and apoptosis were calculated by flow cytometry analysis. CCK-8 assay was done to evaluate the proliferative potentials of chondrocytes. The levels of cell cycle-related proteins (Cyclin A1, Cyclin B1 and Cyclin D2) and pro-apoptotic proteins (Caspase3 and Caspase9) were measured by western blotting. Tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß) and IL-6 levels were determined via ELISA. Hematoxylin & eosin (HE) Staining was used for pathological examination in OA rats. RESULTS: Pronounced downregulation of NEAT1 and PGAP1 and high amounts of miR-374b-5p were identified in OA patients, LPS-induced chondrocytes and OA rats. NEAT1 targeted miR-374b-5p to control PGAP1 expression. Loss of NEAT1 or upregulation of miR-374b-5p dramatically accelerated apoptosis, led to the G1/S arrest and promoted the secretion of inflammatory cytokines in LPS-induced chondrocytes, while ectopic expression of PGAP1 exhibited the opposite influences on chondrocytes. Additionally, we further indicated that upregulation of miR-374b-5p attenuated the effects of PGAP1 overexpression on LPS-induced chondrocytes. CONCLUSIONS: Reduced NEAT1 induces the development of OA via miR-374b-5p/PGAP1 pathway. This suggests that the regulatory axis NEAT1/miR-374b-5p/PGAP1 is a novel and prospective target for OA treatment.


Subject(s)
MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Animals , Humans , Rats , Down-Regulation/genetics , Lipopolysaccharides , MicroRNAs/genetics , Osteoarthritis/genetics , Rats, Wistar , RNA, Long Noncoding/genetics , Chondrocytes , Cells, Cultured
14.
J Immunol Res ; 2023: 2061071, 2023.
Article in English | MEDLINE | ID: mdl-37425490

ABSTRACT

Dysregulation of miRNAs in chondrocytes has been confirmed to participate in osteoarthritis (OA) progression. Previous study has screen out several key miRNAs may play crucial role in OA based on bioinformatic analysis. Herein, we identified the downregulation of miR-1 in OA samples and inflamed chondrocytes. The further experiments revealed that miR-1 played an essential role in maintaining chondrocytes proliferation, migration, antiapoptosis, and anabolism. Connexin 43 (CX43) was further predicted and confirmed to be the target of miR-1, and mediated the promotion effects of miR-1 in regulating chondrocyte functions. Mechanistically, miR-1 maintained the expression of GPX4 and SLC7A11 by targeting CX43, attenuated the accumulation of intracellular ROS, lipid ROS, MDA, and Fe2+ in chondrocytes, thereby inhibiting the ferroptosis of chondrocytes. Finally, experimental OA model was constructed by anterior cruciate ligament transection surgery, and Agomir-1 was injected into the joint cavity of mice to assess the protective effect of miR-1 in OA progression. Histological staining, immunofluorescence staining and Osteoarthritis Research Society International score revealed that miR-1 could alleviate the OA progression. Therefore, our study elucidated the mechanism of miR-1 in OA in detail and provided a new insight for the treatment of OA.


Subject(s)
Ferroptosis , MicroRNAs , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Reactive Oxygen Species/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics
15.
Anal Methods ; 15(26): 3188-3195, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37340797

ABSTRACT

The phagocyte's lysosome is the primary site of hypochlorous acid (HOCl) synthesis, and HOCl can be used as a biomarker for osteoarthritis diagnosis and treatment evaluation. Accurate detection of HOCl with high sensitivity and selectivity is required to understand its activities in healthy bio-systems and diseases. By integrating acceptable design principles and dye screening methodologies, we proposed and developed a novel near-infrared fluorescent HOCl sensing probe (FNIR-HOCl). The FNIR-HOCl probe has a quick reaction rate, high sensitivity (LOD = 70 nM), and excellent selectivity toward HOCl over other metal ions and reactive oxygen species. It has been successfully implemented to detect endogenous HOCl produced by RAW264.7 cells, as well as in vivo imaging towards mice with osteoarthritis. As a result, the probe FNIR-HOCl is extremely promising as a biological tool for revealing the roles of HOCl in various physiological and pathological contexts.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Animals , Mice , RAW 264.7 Cells , Lysosomes
16.
Signal Transduct Target Ther ; 8(1): 202, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198232

ABSTRACT

Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.


Subject(s)
Antineoplastic Agents , Bone Diseases , Humans , Ligands , Bone Diseases/drug therapy , Bone Diseases/genetics , Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Signal Transduction
18.
Colloids Surf B Biointerfaces ; 224: 113196, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764204

ABSTRACT

Polyetheretherketone (PEEK) has been widely applied in biomedical engineering. However, the unsatisfactory bioactivity essentially limits the clinical application of PEEK. In this study, a simply immersing method was proposed to fabricate a dual-functional PEEK with antibacterial properties and enhanced bone integration. Firstly, the surface of PEEK was modified with a polydopamine (PDA) coating by incubating at dopamine solution. Afterward, the PEEK-PDA was modified with manganese (Mn) and silver (Ag) ions by the soaking method to fabricate the PEEK-PDA-Mn/Ag. The physicochemical capabilities of PEEK-PDA-Mn/Ag were further explored in the ions release, wettability, morphology, and element distributions. PEEK-PDA-Mn/Ag obviously accelerated the adhesion and distribution of MC3T3-E1 cells, indicating favorable biosafety in vitro. Meanwhile, the osteogenic properties of PEEK-PDA-Mn and PEEK-PDA-Mn/Ag were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Additionally, the wide antibacterial capabilities of PEEK-PDA-Mn/Ag were proved in both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. Furthermore, the PEEK-PDA-Mn/Ag was antibacterial with capability in enhancing osseointegration in vivo. Overall, the simply immersing method can modify the surface of PEEK, giving the bioactivity, biocompatibility, and antibacterial ability to the composited PEEK, which could be applied as an orthopedic implant in clinical.


Subject(s)
Osseointegration , Staphylococcus aureus , Escherichia coli , Polyethylene Glycols/chemistry , Benzophenones/pharmacology , Ketones/pharmacology , Ketones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis , Bacteria , Ions
19.
Bioact Mater ; 24: 263-312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632509

ABSTRACT

Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.

20.
Bone Res ; 11(1): 8, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36690624

ABSTRACT

MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL
...