Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 57(1): 1-4, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328154

ABSTRACT

The dielectric properties of 0.6CaTiO3-0.4NdAlO3 ceramics under external optical fields were investigated by terahertz time-domain spectroscopy in a frequency range of 0.2 THz to 1 THz at room temperature. It could be found that the variation of the real part of complex permittivity is approximately 0.31 in the frequency range of 0.2 THz to 1 THz. However the imaginary part of the dielectric constant does not change appreciably with the external optical field. The micromechanism of these results was attributed to the built-in electric field caused by the excited free carriers in the ceramics.

2.
Opt Express ; 19(6): 5118-25, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445146

ABSTRACT

The dielectric properties of 1050 °C/12h sintered CaCu3Ti4O12 (CCTO) ceramics have been investigated by using terahertz time domain spectroscopy in the frequency range of 0.2-1.6 THz at room temperature. When applying an external optical field, an obvious variation of dielectric constant was observed and reached up to 7%. However, the dielectric loss does not change appreciably. From the results, we found the change of refractive index has a linear relationship on scale with the applied light intensity. These findings were attributed to the change of spontaneous polarization in the ceramic caused by the excited free carriers.

3.
Article in English | MEDLINE | ID: mdl-20639146

ABSTRACT

Ba(0.6)Sr(0.4)TiO(3)-Mg(2)SiO(4)-MgO composite ceramics were prepared by a solid-state reaction method and their dielectric tunable characteristics were investigated for the potential application as microwave tunable materials. The addition of Mg(2)SiO(4)-MgO into Ba(0.6)Sr(0.4)TiO(3) forms ferroelectric (Ba(0.6)Sr(0.4)TiO(3))-dielectric (Mg(2)SiO(4)-MgO) composites and shifts the Curie temperature to a lower temperature. The dielectric constant and loss tangent of Ba(0.6)Sr(0.4)TiO(3)-Mg(2)Si(O4)- MgO composites have been decreased and the overall tunability is maintained at a sufficiently high level. The microwave dielectric properties of Ba(0.6)Sr(0.4)TiO(3)-Mg(2)Si(O4)-MgO composites were evaluated. Ba(0.6)Sr(0.4)TiO(3)-Mg(2)SiO(4)-MgO composites have tunability of 9.2 to 10.5% at 100 kHz under 2 kV/mm, indicating that it is a promising candidate material for tunable microwave applications requiring a low dielectric constant.

4.
Article in English | MEDLINE | ID: mdl-19942521

ABSTRACT

Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.


Subject(s)
Barium Compounds/chemistry , Ceramics/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Titanium/chemistry , Electric Impedance , Materials Testing , Microwaves , Vibration
5.
Article in English | MEDLINE | ID: mdl-19049916

ABSTRACT

Ba(0.6)Sr(0.4)TiO(3)-Sr(Ga(0.5)Ta(0.5))O(3) solid solutions are prepared by a solid-state reaction method, and their dielectric and tunable characteristics are investigated. The solid solutions with cubic perovskite structures are obtained for compositions of 10-50 mol% Sr(Ga(0.5)Ta(0.5))O(3). It is observed that the addition of Sr(Ga(0.5)Ta(0.5))O(3) into Ba(0.6)Sr(0.4)TiO(3) causes a shift in the phase transition peak to a lower temperature. Ba(0.6)Sr(0.4)TiO(3)-Sr(Ga(0.5)Ta(0.5))O(3) solid solutions exhibit depressed and broadened phase transition peaks, resulting in decreased dielectric constants and dielectric losses at room temperature. With the increase of Sr(Ga(0.5)Ta(0.5))O(3) content, the dielectric constant, loss tangent, and tunability are decreased. 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1Sr(Ga(0.5)Ta(0.5))O(3) has a dielectric constant epsilon = 534 and a tunability of 16% at 100 kHz under 2.63 kV/mm. The dielectric characteristics of Ba(0.6)Sr(0.4)TiO(3)-Sr(Ga(0.5)Ta(0.5))O(3) ceramics at microwave frequencies are also evaluated.


Subject(s)
Barium Compounds/chemistry , Barium Compounds/radiation effects , Materials Testing , Oxides/chemistry , Oxides/radiation effects , Strontium/chemistry , Strontium/radiation effects , Titanium/chemistry , Titanium/radiation effects , Electric Conductivity , Microwaves , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...