Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Small ; : e2401241, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660829

ABSTRACT

It is challenging to sufficiently regulate endogenous neuronal reactive oxygen species (ROS) production, reduce neuronal apoptosis, and reconstruct neural networks under spinal cord injury conditions. Here, hydrogel surface grafting and microsol electrospinning are used to construct a composite biomimetic scaffold with "external-endogenous" dual regulation of ROS. The outer hydrogel enhances local autophagy through responsive degradation and rapid release of rapamycin (≈80% within a week), neutralizing extracellular ROS and inhibiting endogenous ROS production, further reducing neuronal apoptosis. The inner directional fibers continuously supply brain-derived neurotrophic factors to guide axonal growth. The results of in vitro co-culturing show that the dual regulation of oxidative metabolism by the composite scaffold approximately doubles the neuronal autophagy level, reduces 60% of the apoptosis induced by oxidative stress, and increases the differentiation of neural stem cells into neuron-like cells by ≈2.5 times. The in vivo results show that the composite fibers reduce the ROS levels by ≈80% and decrease the formation of scar tissue. RNA sequencing results show that composite scaffolds upregulate autophagy-associated proteins, antioxidase genes, and axonal growth proteins. The developed composite biomimetic scaffold represents a therapeutic strategy to achieve neurofunctional recovery through programmed and accurate bidirectional regulation of the ROS cascade response.

2.
Bioact Mater ; 37: 132-152, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38549774

ABSTRACT

Sustained and intense inflammation is the pathological basis for intervertebral disc degeneration (IVDD). Effective antagonism or reduction of local inflammatory factors may help regulate the IVDD microenvironment and reshape the extracellular matrix of the disc. This study reports an immunomodulatory hydrogel microsphere system combining cell membrane-coated mimic technology and surface chemical modification methods by grafting neutrophil membrane-coated polylactic-glycolic acid copolymer nanoparticles loaded with transforming growth factor-beta 1 (TGF-ß1) (T-NNPs) onto the surface of methacrylic acid gelatin anhydride microspheres (GM) via amide bonds. The nanoparticle-microsphere complex (GM@T-NNPs) sustained the long-term release of T-NNPs with excellent cell-like functions, effectively bound to pro-inflammatory cytokines, and improved the release kinetics of TGF-ß1, maintaining a 36 day-acting release. GM@T-NNPs significantly inhibited lipopolysaccharide-induced inflammation in nucleus pulposus cells in vitro, downregulated the expression of inflammatory factors and matrix metalloproteinase, and upregulated the expression of collagen-II and aggrecan. GM@T-NNPs effectively restored intervertebral disc height and significantly improved the structure and biomechanical function of the nucleus pulposus in a rat IVDD model. The integration of biomimetic technology and nano-drug delivery systems expands the application of biomimetic cell membrane-coated materials and provides a new treatment strategy for IVDD.

3.
Adv Healthc Mater ; : e2304585, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411324

ABSTRACT

The innate immune response is crucial to inflammation, but how neutrophils and macrophages act in bone repair and tissue engineering treatment strategies await clarification. In this study, it is found that N2 neutrophils release stronger "eat me" signals to induce macrophage phagocytosis and polarize into the M2 anti-inflammatory phenotype. Guided by this biological mechanism, a mesoporous bioactive glass scaffold (MBG) is filled with hyaluronic acid methacryloyl (HAMA) hydrogel loaded with Transforming growth factor-ß1 (TGFß1) adenovirus (Ad@H), constructing a genetically engineered composite scaffold (Ad@H/M). The scaffold not only has good hydrophilicity and biocompatibility, but also provides mechanical stress support for bone repair. Adenovirus infection quickly induces N2 neutrophils, upregulating NF-κB and MAPK signaling pathways through Toll-like receptor 4 (TLR4) to promote the inflammatory response and macrophage phagocytosis. Macrophages perform phagocytosis and polarize towards the M2 phenotype, mediating the inflammatory response by inhibiting the PI3K-AKT-NF-κB pathway, maintaining homeostasis of the osteogenic microenvironment. The role of the Ad@H/M scaffold in regulating early inflammation and promoting long-term bone regeneration is further validated in vivo. In brief, this study focuses on the cascade of reactions between neutrophils and macrophage subtypes, and reports a composite scaffold that coordinates the innate immune response to promote bone repair.

4.
Adv Healthc Mater ; 13(11): e2303851, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226706

ABSTRACT

Targeting macrophages can facilitate the site-specific repair of critical bone defects. Herein, a composite hydrogel, gelatin-Bletilla striata polysaccharide-mesoporous bioactive glass hydrogel (GBMgel), is constructed via the self-assembly of mesoporous bioactive glass on polysaccharide structures, through the Schiff base reaction. GBMgel can efficiently capture macrophages and drive the recruitment of seed stem cells and vascular budding required for regeneration in the early stages of bone injury, and the observed sustained release of inorganic silicon ions further enhances bone matrix deposition, mineralization, and vascular maturation. Moreover, the use of macrophage-depleted rat calvarial defect models further confirms that GBMgel, with ligand-selective macrophage targeting, increases the bone regeneration area and the proportion of mature bone. Mechanistic studies reveal that GBMgel upregulates the TLR4/NF-κB and MAPK macrophage pathways in the early stages and the JAK/STAT3 pathway in the later stages; thus initiating macrophage polarization at different time points. In conclusion, this study is based on the endogenous self-healing properties of bone macrophages, which enhances stem cell homing, and provides a research and theoretical basis upon which bone tissue can be reshaped and regenerated using the body's immune power, providing a new strategy for the treatment of critical bone defects.


Subject(s)
Bone Regeneration , Hydrogels , Macrophages , Animals , Bone Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Rats , Rats, Sprague-Dawley , Mice , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , RAW 264.7 Cells , Ligands , Male , Gelatin/chemistry , Skull/drug effects , Skull/pathology , Skull/injuries , Polysaccharides/chemistry , Polysaccharides/pharmacology
5.
Adv Sci (Weinh) ; 11(6): e2306780, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037294

ABSTRACT

Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1ß signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.


Subject(s)
Metal-Organic Frameworks , Spinal Cord Injuries , Humans , Metal-Organic Frameworks/metabolism , Ligands , Capsules/metabolism , Capsules/pharmacology , Capsules/therapeutic use , Reactive Oxygen Species/metabolism , Nerve Regeneration/physiology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Mitochondria/metabolism
7.
J Biomater Sci Polym Ed ; 34(14): 2000-2020, 2023 10.
Article in English | MEDLINE | ID: mdl-37071056

ABSTRACT

The periosteum plays a key role in bone tissue regeneration, especially in the promotion and protection of new bones. However, among the bone repair materials, many biomimetic artificial periosteum lack the natural periosteal structure, stem cells, and immunoregulation required for bone regeneration. In this study, we used natural periosteum to produce acellular periosteum. To retain the appropriate cell survival structure and immunomodulatory proteins, we grafted the functional polypeptide SKP on the surface collagen of the periosteum via an amide bond, providing the acellular periosteum with the ability to recruit mesenchymal stem cells. Thus, we developed a biomimetic periosteum (DP-SKP) with the ability to promote stem cell homing and immunoregulation in vivo. Compared to the blank and simple decellularized periosteum groups, DP-SKP was more conducive to stem cell adhesion, growth, and osteogenic differentiation in vitro. Additionally, compared with the other two groups, DP-SKP significantly promoted mesenchymal stem cell homing to the periosteal transplantation site, improved the bone immune microenvironment, and accelerated new lamellar bone formation in the critical size defect of rabbit skulls in vivo. Therefore, this acellular periosteum with a mesenchymal stem cell homing effect is expected to be used as an extracellular artificial periosteum in clinical practice.


Subject(s)
Mesenchymal Stem Cells , Periosteum , Animals , Rabbits , Osteogenesis , Stem Cells , Amides
8.
Bioact Mater ; 24: 346-360, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632505

ABSTRACT

Intervertebral disc degeneration (IVDD) is commonly caused by imbalanced oxygen metabolism-triggered inflammation. Overcoming the shortcomings of antioxidants in IVDD treatment, including instability and the lack of targeting, remains challenging. Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots (BPQDs) onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres (GM@CS-BP), which attenuate extracellular acidosis in nucleus pulposus (NP), block the inflammatory cascade, reduce matrix metalloproteinase expression (MMP), and remodel the extracellular matrix (ECM) in intervertebral discs (IVDs). The GM@CS-BP microspheres reduce H2O2 intensity by 229%. Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167% and maintain stable release for 21 days, demonstrating the antioxidant properties and sustained modulation of the BPQDs. After the GM@CS-BP treatment, western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors. Histological staining in an 8-week IVDD model confirmed the regeneration of NP. GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation. This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.

9.
Adv Healthc Mater ; 12(12): e2202658, 2023 05.
Article in English | MEDLINE | ID: mdl-36652529

ABSTRACT

The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel "perfusion" system and electrospinning technology are integrated, and a "concrete" composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti-inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell-derived factor-1α and brain-derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four- and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine-delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Rats , Animals , Nerve Regeneration/physiology , Spinal Cord Injuries/therapy , Neural Stem Cells/transplantation , Anti-Inflammatory Agents/therapeutic use , Hydrogels/pharmacology , Hydrogels/therapeutic use , Spinal Cord
10.
Adv Healthc Mater ; 12(9): e2202785, 2023 04.
Article in English | MEDLINE | ID: mdl-36541060

ABSTRACT

Living biomaterials directly couple with live cells to synthesize functional molecules and respond to dynamic environments, allowing the design, construction and application of next generation composite materials. Improving the coordination and communication between artificial materials and living cells is essential. In this study, collagen self-assembly and micro-sol electrospinning techniques are used to prepare oriented living fiber bundles that can increase the transplantation rate of stem cells in the early stages of inflammation, indirectly enhancing the dynamic regulation of stem cells during inflammation. Additionally, brain-derived neurotrophic factor (BDNF) contained in the fiber can improve the differentiation of bone marrow mesenchymal stem cells (BMSCs) into neurons once the inflammatory storm subsides. The living oriented fiber bundles fully simulate the 3D structure of the central nervous system, activate integrin ß1, promote the growth and adhesion of stem cells in the acute stage of inflammation, upregulate anti-inflammatory genes by more than twofold via BMSCs in response to inflammation, and stably release BDNF for up to 4 weeks post-inflammation storm subsidence. Finally, the BDNF induces the differentiation of BMSCs to neurons by enhancing the expression of neural-related genes, which enables the recovery of neurological functions in the later stages of spinal cord injury.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Spinal Cord Regeneration , Humans , Brain-Derived Neurotrophic Factor/pharmacology , Cell Differentiation , Inflammation , Mesenchymal Stem Cell Transplantation/methods , Spinal Cord
11.
Adv Healthc Mater ; 12(1): e2201661, 2023 01.
Article in English | MEDLINE | ID: mdl-36189833

ABSTRACT

The bone immune microenvironment (BIM) regulates bone regeneration and affects the prognosis of fractures. However, there is currently no effective strategy that can precisely modulate macrophage polarization to improve BIM for bone regeneration. Herein, a hybridized biphasic bionic periosteum, inspired by the BIM and functional structure of the natural periosteum, is presented. The gel phase is composed of genipin-crosslinked carboxymethyl chitosan and collagen self-assembled hybrid hydrogels, which act as the "dam" to intercept IL-4 released during the initial burst from the bionic periosteum fiber phase, thus maintaining the moderate inflammatory response of M1 macrophages for mesenchymal stem cell recruitment and vascular sprouting at the acute fracture. With the degradation of the gel phase, released IL-4 cooperates with collagen to promote the polarization towards M2 macrophages, which reconfigure the local microenvironment by secreting PDGF-BB and BMP-2 to improve vascular maturation and osteogenesis twofold. In rat cranial defect models, the controlled regulation of the BIM is validated with the temporal transition of the inflammatory/anti-inflammatory process to achieve faster and better bone defect repair. This strategy provides a drug delivery system that constructs a coordinated BIM, so as to break through the predicament of the contradiction between immune response and bone tissue regeneration.


Subject(s)
Interleukin-4 , Periosteum , Rats , Animals , Periosteum/metabolism , Interleukin-4/chemistry , Bionics , Bone Regeneration , Osteogenesis , Collagen/chemistry
12.
Front Bioeng Biotechnol ; 10: 927050, 2022.
Article in English | MEDLINE | ID: mdl-35935476

ABSTRACT

The regeneration of critical-size bone defects on long bones has remained a significant challenge because of the complex anatomical structure and vascular network. In such circumstances, current biomaterial forms with homogeneous structure and function can hardly satisfy the need for both osteogenesis and angiogenesis. In the current study, a heterogeneous biomimetic structured scaffold was constructed with the help of a 3D printed mold to simultaneously mimic the outer/inner periosteum and intermediate bone matrix of a natural long bone. Because of the reinforcement via modified mesoporous bioactive glass nanoparticles (MBGNs), enhanced structural stability and adequate osteogenic capacity could be achieved for the intermediate layer of this scaffold. Conversely, GelMA incorporated with VEGF-loaded liposome exhibiting controlled release of the angiogenic factor was applied to the inner and outer layers of the scaffold. The resulting heterogeneous structured scaffold was shown to successfully guide bone regeneration and restoration of the natural bone anatomic structure, rendering it a promising candidate for future orthopedic clinical studies.

13.
Biomaterials ; 288: 121685, 2022 09.
Article in English | MEDLINE | ID: mdl-35953327

ABSTRACT

Organic/inorganic composites have advantages in promoting bone repair; however, early changes in the local immune response after material implantation and the mechanisms that affect the late osteogenesis have not been revealed systematically. Herein, we prepared injectable composite poly (l-lactic acid)/nano hydroxyapatite (PLLA/nHA) porous microspheres (MS@SL@nHA) using a microfluidic technology to explore the changes in the osteo-immune microenvironment and potential mechanisms using immunology and bioinformatics. Immunological analysis revealed that macrophages (Mφ) phagocytosed the nHA released from the composite microspheres, increased the proportion of M2 Mφ, regulated the early inflammatory response, exerted strong paracrine effects, and improved the osteo-immune microenvironment. Bioinformatics analysis showed that the signal transduction and adhesion ability were enhanced after Mφ activation, the inflammatory signaling pathways were inhibited, regulating the polarization direction, and the expression of cell growth factors was up-regulated to promote late osteogenesis. In vivo studies demonstrated that the composite microspheres effectively regulated Mφ polarization, and the paracrine secreted growth factors created a microsphere-centered osteogenesis pattern at the defect site. In conclusion, we successfully prepared injectable composite PLLA/nHA porous microspheres and systematically explored the osteogenesis-related mechanisms using immunological and bioinformatics analysis to provide theoretical evidence for bone repair materials that contribute to bone differentiation.


Subject(s)
Bone Regeneration , Tissue Engineering , Computational Biology , Durapatite/pharmacology , Microfluidics , Microspheres , Osteogenesis , Tissue Scaffolds
14.
J Cancer ; 12(11): 3249-3256, 2021.
Article in English | MEDLINE | ID: mdl-33976734

ABSTRACT

Glioma is a pervasive malignancy and the main cause of cancer-related deaths worldwide. Circular RNA is an important subject of cancer research, and its role and function in glioma are poorly understood. This study demonstrated that hsa_circ_0091581 is upregulated in glioma tissues and cells. The results of the CCK-8, EdU, and transwell assays indicated that hsa_circ_0091581 promotes proliferation, migration, and invasion of glioma cells. The results of the luciferase reporter and RNA immunoprecipitation assays indicated that the mechanism of the effects of hsa_circ_0091581 on glioma cells involves sponging miR-1243-5p to regulate RMI1. The results of the rescue experiments indicated that hsa_circ_0091581 regulates proliferation, migration, and invasion of glioma cells by targeting RMI1 in a miR-1243-5p dependent manner. The results of the nude mice xenograft assays showed that knockdown of hsa_circ_0091581 inhibits glioma growth in vivo. Thus, our study determined the role of hsa_circ_0091581/miR-1243-5p/RMI1 in glioma and suggests that this axis may be a novel therapeutic target in glioma.

15.
Nano Lett ; 21(6): 2690-2698, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33543616

ABSTRACT

Although injectable hydrogel microsphere has demonstrated tremendous promise in clinical applications, local overactive inflammation in degenerative diseases could jeopardize biomaterial implantation's therapeutic efficacy. Herein, an injectable "peptide-cell-hydrogel" microsphere was constructed by covalently coupling of APETx2 and further loading of nucleus pulposus cells, which could inhibit local inflammatory cytokine storms to regulate the metabolic balance of ECM in vitro. The covalent coupling of APETx2 preserved the biocompatibility of the microspheres and achieved a controlled release of APETx2 for more than 28 days in an acidic environment. By delivering "peptide-cell-hydrogel" microspheres to a rat degenerative intervertebral disc at 4 weeks, the expression of ASIC-3 and IL-1ß was significantly decreased for 3.53-fold and 7.29-fold, respectively. Also, the content of ECM was significantly recovered at 8 weeks. In summary, the proposed strategy provides an effective approach for tissue regeneration under overactive inflammatory responses.


Subject(s)
Hydrogels , Nucleus Pulposus , Animals , Biocompatible Materials , Inflammation/drug therapy , Microspheres , Rats
16.
Cell Biol Int ; 45(6): 1316-1326, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33620117

ABSTRACT

Hyperglycemia can drive advanced glycation end product (AGE) accumulation and associated nucleus pulposus cell (NPC) dysfunction, but the basis for this activity has not been elucidated. Hypoxia-inducible factor-1α (HIF-1α) is subject to cell-type-specific AGE-mediated regulation. In the current study, we assessed the mechanistic relationship between AGE accumulation and HIF-1α degradation in NPCs. Immunohistochemical staining of degenerated nucleus pulposus (NP) samples was used to assess AGE levels. AGE impact on NPC survival and glycolysis-related gene expression was assessed via 3-(4,5)-dimethylthiazol(-z-y1)-3,5-di-phenyltetrazolium bromide assay and quantitative reverse-transcription polymerase chain reaction (qRT-PCR), while HIF-1α expression in NPCs following AGE treatment was monitored via Western blot analysis and qRT-PCR. Additionally, a luciferase reporter assay was used to monitor HIF-1α transcriptional activity. The importance of the receptor for activated C-kinase 1 (RACK1) as a mediator of HIF-1α degradation was evaluated through gain- and loss-of-function experiments. Competitive binding of RACK1 and HSP90 to HIF-1α was evaluated via immunoprecipitation. Increased AGE accumulation was evident in NP samples from diabetic patients, and AGE treatment resulted in reduced HIF-1α protein levels in NPCs that coincided with reduced HIF-1α transcriptional activity. AGE treatment impaired the stability of HIF-1α, leading to its RACK1-mediated proteasomal degradation in a manner independent of the canonical PHD-mediated degradation pathway. Additionally, RACK1 competed with HSP90 for HIF-1α binding following AGE treatment. AGE treatment of NPCs leads to HIF-1α protein degradation. RACK1 competes with HSP90 for HIF-1α binding following AGE treatment, resulting in posttranslational HIF-1α degradation. These results suggest that AGE is an intervertebral disc degeneration risk factor, and highlight potential avenues for the treatment or prevention of this disease.


Subject(s)
Glycation End Products, Advanced/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hyperglycemia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasm Proteins/physiology , Nucleus Pulposus , Receptors for Activated C Kinase/physiology , Aged , Female , Humans , Male , Middle Aged , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Protein Binding
17.
Oncol Rep ; 41(3): 1497-1508, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30569179

ABSTRACT

Hepatocyte growth factor (HGF), an activator of the c­Met signaling pathway, is involved in tumor invasiveness, metastasis and radiotherapy resistance. In the present study, a novel HGF regulatory pathway in lung cancer involving micro-RNAs (miRNAs/miR) is described. Immunohistochemical staining and western blot analyses demonstrated that HGF was upregulated and associated with miR­200a downregulation in non­small cell lung cancer (NSCLC) samples compared with normal lung tissues. The association between HGF and miR­200a was associated with the degree of tumor malignancy and cell migration and invasion. miR­200a negatively regulated HGF expression by targeting the 3'­untranslated region of the HGF mRNA. miR­200a overexpression induced HGF downregulation, decreased NSCLC cell migration and invasion, promoted apoptosis, and decreased cell survival in A549 and H1299 cells in response to ionizing radiation. The present results revealed a previously uncharacterized role of miRNA­200a in regulating tumor malignancy and radiosensitivity by suppressing HGF expression, a key factor in the HGF/c­Met pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Hepatocyte Growth Factor/metabolism , Lung Neoplasms/pathology , MicroRNAs/metabolism , Radiation Tolerance/genetics , Signal Transduction/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/radiation effects , Computational Biology , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/radiation effects
18.
Methods Mol Biol ; 1404: 753-760, 2016.
Article in English | MEDLINE | ID: mdl-27076335

ABSTRACT

Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info .


Subject(s)
Computational Biology/methods , HLA Antigens/metabolism , Internet , Peptides/metabolism , Humans , Protein Binding , Software
19.
Mol Cell Biochem ; 403(1-2): 33-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25648114

ABSTRACT

The dysregulation of miR-1224-5p has been reported in several human cancers. However, the expression and function of miR-1224-5p in glioma remains unknown. The aim of our study was to investigate the effect of miR-1224-5p on glioma cells and to determine its functional signaling mediators. Using 198 glioma samples within the Chinese Glioma Genome Atlas expression dataset, we demonstrated that miR-1224-5p expression is decreased in high-grade gliomas when compared with low-grade gliomas. Differential miR-1224-5p expression in 50 randomly selected samples was verified by in situ hybridization. The expression of miR-1224-5p was shown to positively correlate with overall survival in 82 glioblastoma patients. Exogenous expression of miR-1224-5p in glioma cells suppressed proliferation and invasion and promoted apoptosis. Target prediction algorithms identified a consensus miR-1224-5p recognition site in the 3'UTR of the cAMP response element-binding protein (CREB1) gene, and this sequence was shown to directly confer miR-1224-5p repression in luciferase reporter assays. Furthermore, exogenous miR-1224-5p expression was shown to down-regulate CREB1, as well as its downstream target genes matrix metalloproteinase-9 and B-cell lymphoma-2. Conversely, over-expression of CREB1 reversed the effect of miR-1224-5p on the proliferation, invasion, and apoptosis of glioma cells. These data indicate that miR-1224-5p may inhibit tumor-associated activity in malignant gliomas by targeting CREB1.


Subject(s)
Brain Neoplasms/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Genes, Tumor Suppressor , Glioma/genetics , MicroRNAs/metabolism , Apoptosis , Base Sequence , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , MicroRNAs/genetics , Molecular Sequence Data , Neoplasm Invasiveness , Prognosis , Survival Analysis
20.
BMC Genomics ; 15 Suppl 9: S9, 2014.
Article in English | MEDLINE | ID: mdl-25521198

ABSTRACT

BACKGROUND: Computational prediction of major histocompatibility complex class II (MHC-II) binding peptides can assist researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although many computational methods have been proposed, the performance of these methods are far from satisfactory. The difficulty of MHC-II peptide binding prediction comes mainly from the large length variation of binding peptides. METHODS: We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHC-II binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9 amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions. RESULTS: Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing amino acids at key positions in the instance. The results are consistent with those reported in the literature on MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen, the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL is freely available at http://datamining-iip.fudan.edu.cn/service/MHC2MIL/index.html.


Subject(s)
Artificial Intelligence , Computational Biology/methods , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Peptides/metabolism , Alleles , Histocompatibility Antigens Class II/genetics , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...