Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
1.
Chem Soc Rev ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855863

ABSTRACT

The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.

2.
J Agric Food Chem ; 72(23): 13439-13450, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829321

ABSTRACT

The objective assessment of habitual (poly)phenol-rich diets in nutritional epidemiology studies remains challenging. This study developed and evaluated the metabolic signature of a (poly)phenol-rich dietary score (PPS) using a targeted metabolomics method comprising 105 representative (poly)phenol metabolites, analyzed in 24 h of urine samples collected from healthy volunteers. The metabolites that were significantly associated with PPS after adjusting for energy intake were selected to establish a metabolic signature using a combination of linear regression followed by ridge regression to estimate penalized weights for each metabolite. A metabolic signature comprising 51 metabolites was significantly associated with adherence to PPS in 24 h urine samples, as well as with (poly)phenol intake estimated from food frequency questionnaires and diaries. Internal and external data sets were used for validation, and plasma, spot urine, and 24 h urine samples were compared. The metabolic signature proposed here has the potential to accurately reflect adherence to (poly)phenol-rich diets, and may be used as an objective tool for the assessment of (poly)phenol intake.


Subject(s)
Diet , Polyphenols , Humans , Adult , Female , Male , Middle Aged , Polyphenols/metabolism , Polyphenols/urine , Polyphenols/administration & dosage , Young Adult , Metabolomics , Dietary Patterns
3.
Angew Chem Int Ed Engl ; : e202409145, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869085

ABSTRACT

Metal hexacyanoferrates (HCFs) are regarded as promising cathode materials for potassium-ion batteries (PIBs) on account of their low cost and high energy density. However, the difficult-to-remove [Fe(CN)6] vacancies and crystal water lead to structural instability and capacity deterioration as well as the stereotype of poor thermostability of conventional HCFs. Herein, we report (100) face-oriented potassium magnesium hexacyanoferrate (KMgHCF) nanoplates with low [Fe(CN)6] vacancies and high crystallinity, enabling thermostability up to 550 °C, high-temperature carbon coating and crystal water elimination. The as-obtained KMgHCF/C nanoplates exhibit superior potassium storage properties, including a large reversible capacity of 84.6 mAh g-1, a high voltage plateau of 3.87 V, excellent long-term cycling performance over 15000 cycles and high rate capability at 5 A g-1. The unprecedented cycling stability of KMgHCF/C is attributed to the synergistic effect of a highly reversible two-phase reaction, low [Fe(CN)6] vacancies and no crystal water, a specially exposed steady (100) surface, and a protective carbon coating. This work provides a new material selection and modification strategy for the practical application of HCFs in PIBs.

4.
Int Immunopharmacol ; 136: 112341, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810309

ABSTRACT

BACKGROUND: Osteoporosis (OP) is a common systemic skeletal disorder characterized by an imbalance in bone homeostasis, involving increased osteoclastic bone formation and decreased osteoblastic bone resorption. Quercetin is a plant polyphenol that has been found to exhibit various biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects. Previous studies have demonstrated its potential to improve postmenopausal OP, although the exact mechanism remains unclear. This study aims to investigate the anti-osteoporotic mechanism of quercetin based on the "intestinal flora - short-chain fatty acids (SCFAs) - inflammatory" signaling axis. METHODS: In this study, we established an ovariectomized (OVX)-induced rat model, quercetin intervention and evaluated the effects on rats following antibiotic (ABX) treatment and fecal microbiota transplantation (FMT). After 6 weeks of intervention, the rats were euthanized, and samples from their femur, tibia, lumbar spine, serum, colon and feces were collected, and bone strength, intestinal flora structure, SCFAs levels and cytokine levels were assessed. RESULTS: Quercetin modulates the intestinal flora by increasing potentially probiotic bacteria (i.e., Lactobacillales, Prevotellaceae, and Blautia) and decreasing potentially pathogenic bacteria (Desulfobacterota, Erysipelotrichales, Romboutsia, and Butyricoccaceae). It also increases SCFAs content and reduces colonic permeability by enhancing tight junction proteins (ZO-1, Occludin). Furthermore, quercetin lowers proinflammatory cytokine levels (LPS, IL-1ß, and TNF-α), which enhances bone strength and prevents OVX-induced bone loss. CONCLUSIONS: Quercetin may effectively reduce bone loss in OVX rats via the "intestinal flora - SCFAs - inflammatory" signaling pathway.

5.
Sci Total Environ ; 931: 172993, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719056

ABSTRACT

Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.


Subject(s)
Air Pollutants , Inflammation , Particulate Matter , Particulate Matter/toxicity , Humans , Inflammation/chemically induced , Air Pollutants/toxicity , Male , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Beijing , Female , Aged , Cytokines/blood , Cytokines/metabolism , Arachidonic Acid/metabolism , Ceramides , Middle Aged , Lipids/blood
6.
Chem Sci ; 15(21): 8204-8215, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817556

ABSTRACT

Electrocatalytic nitrate (NO3-) reduction reaction (eNO3-RR) to ammonia under ambient conditions is deemed a sustainable route for wastewater treatment and a promising alternative to the Haber-Bosch process. However, there is still a lack of efficient electrocatalysts to achieve high NH3 production performance at wastewater-relevant low NO3- concentrations. Herein, we report a Pd74Ru26 bimetallic nanocrystal (NC) electrocatalyst capable of exhibiting an average NH3 FE of ∼100% over a wide potential window from 0.1 to -0.3 V (vs. reversible hydrogen electrode, RHE) at a low NO3- concentration of 32.3 mM. The average NH3 yield rate at -0.3 V can reach 16.20 mg h-1 cm-2. Meanwhile, Pd74Ru26 also demonstrates excellent electrocatalytic stability for over 110 h. Experimental investigations and density functional theory (DFT) calculations suggest that the electronic structure modulation between Pd and Ru favors the optimization of NO3- transport with respect to single components. Along the *NO3 reduction pathway, the synergy between Pd and Ru can also lower the energy barrier of the rate-determining steps (RDSs) on Ru and Pd, which are the protonation of *NO2 and *NO, respectively. Finally, this unique alloying design achieves a high-level dynamic equilibrium of adsorption and coupling between *H and various nitrogen intermediates during eNO3-RR.

7.
Aging (Albany NY) ; 16(9): 8320-8335, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728254

ABSTRACT

Exosomal long non-coding RNAs (LncRNAs) play a crucial role in the pathogenesis of cerebrovascular diseases. However, the expression profiles and functional significance of exosomal LncRNAs in intracranial aneurysms (IAs) remain poorly understood. Through high-throughput sequencing, we identified 1303 differentially expressed LncRNAs in the plasma exosomes of patients with IAs and healthy controls. Quantitative real-time polymerase chain reaction (qRT-PCR) verification confirmed the differential expression of LncRNAs, the majority of which aligned with the sequencing results. ATP1A1-AS1 showed the most significant upregulation in the disease group. Importantly, subsequent in vitro experiments validated that ATP1A1-AS1 overexpression induced a phenotype switching in vascular smooth muscle cells, along with promoting apoptosis and upregulating MMP-9 expression, potentially contributing to IAs formation. Furthermore, expanded-sample validation affirmed the high diagnostic value of ATP1A1-AS1. These findings suggest that ATP1A1-AS1 is a potential therapeutic target for inhibiting IAs progression and serves as a valuable clinical diagnostic marker.


Subject(s)
Apoptosis , Exosomes , Intracranial Aneurysm , Myocytes, Smooth Muscle , Phenotype , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Apoptosis/genetics , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , Intracranial Aneurysm/blood , Exosomes/metabolism , Exosomes/genetics , Male , Myocytes, Smooth Muscle/metabolism , Middle Aged , Female , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Case-Control Studies
8.
Nat Commun ; 15(1): 4488, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802350

ABSTRACT

Understanding of infection dynamics is important for public health measures against monkeypox virus (MPXV) infection. Herein, samples from multiple body sites and environmental fomites of 77 acute MPXV infections (HIV co-infection: N = 42) were collected every two to three days and used for detection of MPXV DNA, surface protein specific antibodies and neutralizing titers. Skin lesions show 100% positivity rate of MPXV DNA, followed by rectum (88.16%), saliva (83.78%) and oropharynx (78.95%). Positivity rate of oropharynx decreases rapidly after 7 days post symptom onset (d.p.o), while the rectum and saliva maintain a positivity rate similar to skin lesions. Viral dynamics are similar among skin lesions, saliva and oropharynx, with a peak at about 6 d.p.o. In contrast, viral levels in the rectum peak at the beginning of symptom onset and decrease rapidly thereafter. 52.66% of environmental fomite swabs are positive for MPXV DNA, with highest positivity rate (69.89%) from air-conditioning air outlets. High seropositivity against A29L (100%) and H3L (94.74%) are detected, while a correlation between IgG endpoint titers and neutralizing titers is only found for A29L. Most indexes are similar between HIV and Non-HIV participants, while HIV and rectitis are associated with higher viral loads in rectum.


Subject(s)
Antibodies, Viral , Monkeypox virus , Mpox (monkeypox) , Virus Shedding , Humans , Male , Antibodies, Viral/immunology , Antibodies, Viral/blood , Prospective Studies , Adult , Monkeypox virus/immunology , Mpox (monkeypox)/immunology , Mpox (monkeypox)/virology , Mpox (monkeypox)/epidemiology , Saliva/virology , Saliva/immunology , HIV Infections/immunology , HIV Infections/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Middle Aged , Longitudinal Studies , DNA, Viral , Oropharynx/virology , Oropharynx/immunology , Coinfection/immunology , Coinfection/virology , Coinfection/epidemiology , Viral Load , Fomites/virology
9.
Environ Int ; 188: 108738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749122

ABSTRACT

Solid fuels are widely used in China and increase the concentrations of indoor air pollutants. Nevertheless, there is limited longitudinal evidence linking solid fuel use and Gastrointestinal (GI) and liver diseases. This study aimed to prospectively investigate the association between household solid fuel use and the risk of GI and liver diseases in middle aged and elderly adults. This work was based on the China Health and Retirement Longitudinal Study (CHARLS). Longitudinal data incorporate with cross-sectional data were analyzed. Compared with individuals using clean fuel for cooking, solid fuel users were observed to have higher risk of GI diseases (OR in 2011, 2013, 2015, 2018 wave separately: 1.37, 95 % CI: 1.24-1.50, P < 0.001; 1.24, 95 % CI: 1.11-1.39, P < 0.001; 1.18, 95 % CI: 1.06-1.33, P < 0.001; 1.23, 95 % CI: 1.04-1.45, P < 0.05). The associations between solid fuel use and liver diseases were not significant in most of the groups. Participants transforming from solid to clean cooking fuels had lower risk of GI and liver diseases than persistent solid fuel users. Moreover, biomass cooking fuel users were at a significant higher risk of both liver and GI diseases compared with clean fuel users. Overall, household solid fuel use, especially for cooking, was related to higher risk of GI and liver diseases, while switching from solid to clean fuels could reduce this risk. Using biomass for cooking was identified to be more associated with the increasing risk of GI and liver diseases than cooking with coal.


Subject(s)
Air Pollution, Indoor , Cooking , Gastrointestinal Diseases , Liver Diseases , Humans , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/analysis , Middle Aged , Aged , Male , Female , China/epidemiology , Liver Diseases/epidemiology , Gastrointestinal Diseases/epidemiology , Longitudinal Studies , Cross-Sectional Studies , Coal , Air Pollutants/analysis
10.
Small ; : e2311966, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770995

ABSTRACT

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

11.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786825

ABSTRACT

Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below -10 dB over 7.01~10.11 GHz and a minimum of -14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature.

12.
J Environ Manage ; 359: 120975, 2024 May.
Article in English | MEDLINE | ID: mdl-38677230

ABSTRACT

Microplastics, as a pivotal concern within plastic pollution, have sparked widespread apprehension due to their ubiquitous presence. Recent research indicates that these minuscule plastic particles may exert discernible effects on the locomotor capabilities and behavior of insect larvae. This study focuses on the impact of polystyrene microplastics (PS-MPs) on the behavior of Drosophila melanogaster larvae, utilizing fruit flies as a model organism. Kinematic analysis methods were employed to assess and extrapolate the toxic effects of PS-MPs on the larvae. Drosophila larvae were exposed to varying concentrations (Control, 0.1 g/L, 1 g/L, 10 g/L, 20 g/L) of 5 µm PS-MPs during their developmental stages. The study involved calculating and evaluating parameters such as the proportion of larvae reaching the edge, distance covered, velocity, and angular velocity within a 5-min timeframe. Across different concentrations, Drosophila larvae exhibit differential degrees of impaired motor function and disrupted locomotor orientation. The proportion of larvae reaching the edge decreased, velocity significantly declined, and angular velocity exhibited a notable increase. These findings strongly suggest that when exposed to a PS-MPs environment, Drosophila larvae exhibit slower movement, increased angular rotation per unit time, leading to a reduction in the proportion of larvae reaching the edge. The altered behavior of Drosophila larvae implies potential damage of microplastics on insect larvae development and activity, consequently impacting the ecosystem and prompting heightened scrutiny regarding microplastics.


Subject(s)
Behavior, Animal , Drosophila melanogaster , Larva , Machine Learning , Microplastics , Polystyrenes , Animals , Microplastics/toxicity , Larva/drug effects , Larva/growth & development , Polystyrenes/toxicity , Behavior, Animal/drug effects , Drosophila melanogaster/drug effects , Drosophila/drug effects
13.
Orthop Surg ; 16(6): 1502-1507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616160

ABSTRACT

Ossification of the sacrotuberous ligament is a rare occurrence in soft tissue, with only 15 cases reported in the past few decades. We reported two cases of bilateral ossification in sacrotuberous ligaments and provided a concise review of the literature on this pathology. Clinical data, radiographic outcomes, and diagnostic and treatment details were obtained. This study aimed to summarize this disease's characteristics and investigate its pathogenesis through a review of literature from the last thirty years. This condition is often incidentally confirmed in elderly males via imagiological examination or gross anatomy and presents a low morbidity rate. Its pathogenesis may be related to stress concentration, excessive intake of element ions, injury repair, and improper operative technique. The majority of patients may not exhibit any clinical symptoms or signs and typically do not require medical interventions. It may be complicated with pudendal nerve entrapment syndrome. The long-term effects of surgical resection and the most effective treatment approach remain areas for further research.


Subject(s)
Ossification, Heterotopic , Humans , Male , Ossification, Heterotopic/etiology , Ossification, Heterotopic/surgery , Ligaments, Articular/surgery , Aged , Middle Aged
14.
Brain Stimul ; 17(3): 501-509, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636820

ABSTRACT

BACKGROUND: Gait impairment has a major impact on quality of life in patients with Parkinson's disease (PD). It is believed that basal ganglia oscillatory activity at ß frequencies (15-30 Hz) may contribute to gait impairment, but the precise dynamics of this oscillatory activity during gait remain unclear. Additionally, auditory cues are known to lead to improvements in gait kinematics in PD. If the neurophysiological mechanisms of this cueing effect were better understood they could be leveraged to treat gait impairments using adaptive Deep Brain Stimulation (aDBS) technologies. OBJECTIVE: We aimed to characterize the dynamics of subthalamic nucleus (STN) oscillatory activity during stepping movements in PD and to establish the neurophysiological mechanisms by which auditory cues modulate gait. METHODS: We studied STN local field potentials (LFPs) in eight PD patients while they performed stepping movements. Hidden Markov Models (HMMs) were used to discover transient states of spectral activity that occurred during stepping with and without auditory cues. RESULTS: The occurrence of low and high ß bursts was suppressed during and after auditory cues. This manifested as a decrease in their fractional occupancy and state lifetimes. Interestingly, α transients showed the opposite effect, with fractional occupancy and state lifetimes increasing during and after auditory cues. CONCLUSIONS: We show that STN oscillatory activity in the α and ß frequency bands are differentially modulated by gait-promoting oscillatory cues. These findings suggest that the enhancement of α rhythms may be an approach for ameliorating gait impairments in PD.

15.
Angew Chem Int Ed Engl ; : e202405648, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660735

ABSTRACT

The interfacial electric field (IEF) in the heterostructure can accelerate electron transport and ion migration, thereby enhancing the electrochemical performance of potassium-ion batteries (PIBs). Nevertheless, the quantification and modulation of the IEF for high-efficiency PIB anodes currently remains a blank slate. Herein, we achieve for the first time the quantification and tuning of IEF via amorphous carbon-coated undifferentiated cobalt-doped FeSe/Fe3Se4 heterostructure (denoted UN-CoFe4Se5/C) for efficient potassium storage. Co doping can increase the IEF in FeSe/Fe3Se4, thereby improving the electron transport, promoting the potassium adsorption capacity, and lowering the diffusion barrier. As expected, the IEF magnitude in UN-CoFe4Se5/C is experimentally quantified as 62.84 mV, which is 3.65 times larger than that of amorphous carbon-coated FeSe/Fe3Se4 heterostructure (Fe4Se5/C). Benefiting from the strong IEF, UN-CoFe4Se5/C as a PIB anode exhibits superior rate capability (145.8 mAh g-1 at 10.0 A g-1) and long cycle lifespan (capacity retention of 95.1 % over 3000 cycles at 1.0 A g-1). Furthermore, this undifferentiated doping strategy can universally regulate the IEF magnitude in CoSe2/Co9Se8 and FeS2/Fe7S8 heterostructures. This work can provide fundamental insights into the design of advanced PIB electrodes.

16.
Appl Microbiol Biotechnol ; 108(1): 302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639796

ABSTRACT

Alternative splicing (AS) greatly expands the protein diversity in eukaryotes. Although AS variants have been frequently reported existing in filamentous fungi, it remains unclear whether lignocellulose-degrading enzyme genes in industrially important fungi undergo AS events. In this work, AS events of lignocellulose-degrading enzymes genes in Aspergillus niger under two carbon sources (glucose and wheat straw) were investigated by RNA-Seq. The results showed that a total of 23 out of the 56 lignocellulose-degrading enzyme genes had AS events and intron retention was the main type of these AS events. The AS variant enzymes from the annotated endo-ß-1,4-xylanase F1 gene (xynF1) and the endo-ß-1,4-glucanase D gene (eglD), noted as XYNF1-AS and EGLD-AS, were characterized compared to their normal splicing products XYNF1 and EGLD, respectively. The AS variant XYNF1-AS displayed xylanase activity whereas XYNF1 did not. As for EGLD-AS and EGLD, neither of them showed annotated endo-ß-1,4-glucanase activity. Instead, both showed lytic polysaccharide monooxygenase (LPMO) activity with some differences in catalytic properties. Our work demonstrated that the AS variants in A. niger were good sources for discovering novel lignocellulose-degrading enzymes. KEY POINTS: • AS events were identified in the lignocellulose-degrading enzyme genes of A. niger. • New ß-1,4-xylanase and LPMO derived from AS events were characterized.


Subject(s)
Alternative Splicing , Aspergillus niger , Aspergillus niger/metabolism , Lignin/metabolism
17.
Ecotoxicol Environ Saf ; 277: 116361, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663189

ABSTRACT

Soil heavy metal contamination has become a global environmental issue, which threaten soil quality, food security and human health. Symphytum officinale L. have exhibited high tolerance and restoration capacity to heavy metals (HMs) stress. However, little is known about the mechanisms of HMs in S. officinale. In this study, transcriptomic and physiological changes of S. officinale response to different HMs (Pb, Cd and Zn) were analyzed and investigated the key genes and pathways involved in HMs uptake patterns. The results showed that phenotypic effects are not significant, and antioxidant enzyme activities were all upregulated. Transcriptome analysis indicated that 1247 differential genes were up-regulated, and 1963 differential genes were down-regulated under Cd stress, while 3752 differential genes were up-regulated, and 7197 differential genes were down-regulated under Pb stress; and 527 differential genes were up-regulated; and 722 differential genes were down-regulated under Zn stress. Based on their expression, we preliminarily speculate that different HMs resistance of S. officinale may be regulated by the differential expression of key genes. These results provide a theoretical basis for determining the exact expression of genes in plants under different heavy metal stress, the processes involved molecular pathways, and how they can be efficiently utilized to improve plant tolerance to toxic metals and improve phytoremediation efficiency.


Subject(s)
Metals, Heavy , Soil Pollutants , Transcriptome , Metals, Heavy/toxicity , Soil Pollutants/toxicity , Transcriptome/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Lead/toxicity , Gene Expression Regulation, Plant/drug effects , Cadmium/toxicity , Gene Expression Profiling , Biodegradation, Environmental , Zinc/toxicity
18.
Heliyon ; 10(4): e26535, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434083

ABSTRACT

There is serious debate among researchers regarding the sustainability implications of economic prosperity and energy dependence. Energy consumption has a critical linkage with economic growth, but it also degrades environmental quality. Therefore, it is important to investigate the relationship between economic growth, the energy mix, and environmental sustainability. However, empirical literature utilizes narrow variables to capture environmental sustainability. Because of this, this research introduces a new environmental sustainability variable using entropy weighting and combining deforestation, household carbon emissions, and life expectancy. This study examines the relationship between environmental sustainability, economic growth, and other selected variables using data from 2002 to 2019 for the G20 and its high-, upper-, and low-middle-income member countries. Since shocks in one G20 country can affect another, this study uses the Augmented Mean Group (AMG) technique for empirical analysis. The results of this study indicate that Gross Domestic Product (EG) and its square term did not support the Environmental Kuznets Curve (EKC) theory. The energy mix has a positive impact on the environmental sustainability gap across all the samples except for the upper-middle-income group. Foreign direct investment positively affects this gap, while population growth has no significant impact. These findings demonstrate that policymakers should support environmentally friendly and clean energy sources to foster long-term economic growth and sustainability.

19.
Sci Rep ; 14(1): 5931, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467737

ABSTRACT

Moyamoya disease (MMD) remains a chronic progressive cerebrovascular disease with unknown etiology. A growing number of reports describe the development of MMD relevant to infection or autoimmune diseases. Identifying biomarkers of MMD is to understand the pathogenesis and development of novel targeted therapy and may be the key to improving the patient's outcome. Here, we analyzed gene expression from two GEO databases. To identify the MMD biomarkers, the weighted gene co-expression network analysis (WGCNA) and the differential expression analyses were conducted to identify 266 key genes. The KEGG and GO analyses were then performed to construct the protein interaction (PPI) network. The three machine-learning algorithms of support vector machine-recursive feature elimination (SVM-RFE), random forest and least absolute shrinkage and selection operator (LASSO) were used to analyze the key genes and take intersection to construct MMD diagnosis based on the four core genes found (ACAN, FREM1, TOP2A and UCHL1), with highly accurate AUCs of 0.805, 0.903, 0.815, 0.826. Gene enrichment analysis illustrated that the MMD samples revealed quite a few differences in pathways like one carbon pool by folate, aminoacyl-tRNA biosynthesis, fat digestion and absorption and fructose and mannose metabolism. In addition, the immune infiltration profile demonstrated that ACAN expression was associated with mast cells resting, FREM1 expression was associated with T cells CD4 naive, TOP2A expression was associated with B cells memory, UCHL1 expression was associated with mast cells activated. Ultimately, the four key genes were verified by qPCR. Taken together, our study analyzed the diagnostic biomarkers and immune infiltration characteristics of MMD, which may shed light on the potential intervention targets of moyamoya disease patients.


Subject(s)
Moyamoya Disease , Humans , Moyamoya Disease/diagnosis , Moyamoya Disease/genetics , Algorithms , Biomarkers , RNA
20.
Environ Int ; 185: 108567, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460242

ABSTRACT

BACKGROUND: Environmental temperature is negatively associated with blood pressure (BP), and hypertension may exacerbate this association. The aim of this study is to investigate whether hypertensive individuals are more susceptible to acute BP increases following temperature decrease than non-hypertensive individuals. METHODS: The study panel consisted of 126 hypertensive and 125 non-hypertensive (n = 251) elderly participants who completed 940 clinical visits during the winter of 2016 and summer of 2017 in Beijing, China. Personal-level environmental temperature (PET) was continuously monitored for each participant with a portable sensor platform. We associated systolic BP (SBP) and diastolic BP (DBP) with the average PET over 24 h before clinical visits using linear mixed-effects models and explored hourly lag patterns for the associations using distributed lag models. RESULTS: We found that per 1 °C decrease in PET, hypertensive individuals showed an average (95 % confidence interval) increase of 0.96 (0.72, 1.19) and 0.28 (0.13, 0.42) mmHg for SBP and DBP, respectively; and non-hypertensive participants showed significantly smaller increases of 0.28 (0.03, 0.53) mmHg SBP and 0.14 (-0.01, 0.30) mmHg DBP. A lag pattern analysis showed that for hypertensive individuals, the increases in SBP and DBP were greatest following lag 1 h PET decrease and gradually attenuated up to lag 10 h exposure. No significant BP change was observed in non-hypertensive individuals associated with lag 1-24 h PET exposure. The enhanced increase in PET-associated BP in hypertensive participants (i.e., susceptibility) was more significant in winter than in summer. CONCLUSIONS: We found that a decrease in environmental temperature was associated with acute BP increases and these associations diminished over time, disappearing after approximately 10 hours. This implies that any intervention measures to prevent BP increases due to temperature drop should be implemented as soon as possible. Such timely interventions are particularly needed for hypertensive individuals especially during the cold season due to their increased susceptibility.


Subject(s)
Hypertension , Humans , Aged , Blood Pressure , Temperature , Hypertension/epidemiology , Hypertension/etiology , Cold Temperature , Beijing
SELECTION OF CITATIONS
SEARCH DETAIL
...