Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Apoptosis ; 28(3-4): 607-626, 2023 04.
Article in English | MEDLINE | ID: mdl-36708428

ABSTRACT

Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Ferroptosis , Animals , Atrial Fibrillation/chemically induced , Atrial Fibrillation/drug therapy , Apoptosis , Sirtuin 1/genetics , Tumor Suppressor Protein p53 , Ethanol/toxicity
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166483, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35798229

ABSTRACT

Excessive alcohol consumption has long been identified as a risk factor for adverse atrial remodeling and atrial fibrillation (AF). Icariin is a principal active component from traditional Chinese medicine Herba Epimedii and has been demonstrated to exert potential antiarrhythmic effect. The present study was designed to evaluate the effect of icariin against alcohol-induced atrial remodeling and disruption of mitochondrial dynamics and furthermore, to elucidate the underlying mechanisms. Excessive alcohol-treated C57BL/6 J mice were infected with serotype 9 adeno-associated virus (AAV9) carrying mouse SIRT3 gene or negative control virus. Meanwhile, icariin (50 mg/kg/d) was administered to the animals in the presence or absence of AAV9 carrying SIRT3 shRNA. We noted that 8 weeks of icariin treatment effectively attenuated alcohol consumption-induced atrial structural and electrical remodeling as evidenced by reduced AF inducibility and reversed atrial electrical conduction pattern as well as atrial enlargement. Furthermore, icariin-treated group exhibited significantly enhanced atrial SIRT3-AMPK signaling, decreased atrial mitoSOX fluorescence and mitochondrial fission markers, elevated mitochondrial fusion markers (MFN1, MFN2) as well as NRF-1-Tfam-mediated mitochondrial biogenesis. Importantly, these beneficial effects were mimicked by SIRT3 overexpression while abolished by SIRT3 knockdown. These data revealed that targeting atrial SIRT3-AMPK signaling and preserving mitochondrial dynamics might serve as the novel therapeutic strategy against alcohol-induced AF genesis. Additionally, icariin ameliorated atrial remodeling and mitochondrial dysfunction by activating SIRT3-AMPK signaling, highlighting the use of icariin as a promising antiarrhythmic agent in this circumstance.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Flavonoids , Sirtuin 3 , AMP-Activated Protein Kinases/genetics , Alcohol Drinking/adverse effects , Animals , Atrial Fibrillation/chemically induced , Atrial Fibrillation/drug therapy , Flavonoids/pharmacology , Mice , Mice, Inbred C57BL , Sirtuin 3/genetics
3.
Food Funct ; 13(13): 7302-7319, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35726783

ABSTRACT

Polydatin has attracted much attention as a potential cardioprotective agent against ischemic heart disease and diabetic cardiomyopathy. However, the effect and mechanism of polydatin supplementation on alcoholic cardiomyopathy (ACM) are still unknown. This study aimed to determine the therapeutic effect of polydatin against ACM and to explore the molecular mechanisms with a focus on SIRT6-AMP-activated protein kinase (AMPK) signaling and mitochondrial function. The ACM model was established by feeding C57/BL6 mice with an ethanol Lieber-DeCarli diet for 12 weeks. The mice received polydatin (20 mg kg-1) or vehicle treatment. We showed that polydatin treatment not only improved cardiac function but also reduced myocardial fibrosis and dynamin-related protein 1 (Drp-1)-mediated mitochondrial fission, and enhanced PTEN-induced putative kinase 1 (PINK1)-Parkin-dependent mitophagy in alcohol-treated myocardium. Importantly, these beneficial effects were mimicked by SIRT6 overexpression but abolished by the infection of recombinant serotype 9 adeno-associated virus (AAV9) carrying SIRT6-specific small hairpin RNA. Mechanistically, alcohol consumption induced a gradual decrease in the myocardial SIRT6 level, while polydatin effectively activated SIRT6-AMPK signaling and modulated mitochondrial dynamics and mitophagy, thus reducing oxidative stress damage and preserving mitochondrial function. In summary, these data present new information regarding the therapeutic actions of polydatin, suggesting that the activation of SIRT6 signaling may represent a new approach for tackling ACM-related cardiac dysfunction.


Subject(s)
Alcoholism , Cardiomyopathy, Alcoholic , Sirtuins , AMP-Activated Protein Kinases/metabolism , Alcohol Drinking , Animals , Cardiomyopathy, Alcoholic/metabolism , Ethanol , Glucosides , Mice , Sirtuins/genetics , Sirtuins/metabolism , Stilbenes
4.
Curr Stem Cell Res Ther ; 17(8): 815-824, 2022.
Article in English | MEDLINE | ID: mdl-34844547

ABSTRACT

BACKGROUND: Human adipose-derived stem cells (hASCs) play an important role in regenerative medicine. OBJECTIVE: Exploring the mechanism of Rg1 in the promotion of the proliferation and adipogenic differentiation of hASCs is important in regenerative medicine research. METHODS: To observe ginsenoside Rg1 in promoting the proliferation and adipogenic differentiation of hASCs, Rg1 medium at different concentrations was established and tested using the cell counting kit-8 (CCK-8) assay, oil red O staining, alizarin red, and alcian blue. Compared to the control, differentially expressed genes (DEGs) were screened via DEG analysis, which was carried out in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. To explore the relationship among mRNA, long non-coding RNA (lncRNA) and microRNA (miRNA), we constructed a competing endogenous RNA (ceRNA) network. RESULTS: In this study, Rg1 was observed to promote the proliferation and adipogenic differentiation of hASCs. Additionally, enriched BPs and KEGG pathways may be involved in the promotion process, where FXR1 and Lnc-GAS5-AS1 were found to be regulatory factors. The regulatory network suggested that Rg1 could regulate the adipocytokine signaling pathway and IL-17 signaling pathway via FXR1 and Lnc-GAS5-AS1, which served as the mechanism encompassing the promotion of Rg1 on the proliferation and adipogenic differentiation of hASCs. CONCLUSION: A comprehensive transcriptional regulatory network related to the promotion ability of Rg1 was constructed, revealing mechanisms regarding Rg1's promotion of the proliferation and adipogenic differentiation of hASCs. The present study provides a theoretical basis for optimizing the function of hASCs.


Subject(s)
Ginsenosides , MicroRNAs , RNA, Long Noncoding , Adipokines/metabolism , Alcian Blue/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Ginsenosides/pharmacology , Humans , Interleukin-17/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Stem Cells/drug effects
5.
Free Radic Biol Med ; 178: 202-214, 2022 01.
Article in English | MEDLINE | ID: mdl-34864165

ABSTRACT

Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.


Subject(s)
Atrial Fibrillation , Melatonin , Amino Acids, Branched-Chain , Angiotensin II , Atrial Fibrillation/chemically induced , Atrial Fibrillation/drug therapy , Atrial Fibrillation/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic GMP-Dependent Protein Kinases/genetics , Humans , Kruppel-Like Transcription Factors , Melatonin/pharmacology
6.
J Pineal Res ; 70(1): e12698, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33016468

ABSTRACT

Targeting mitochondrial quality control with melatonin has been found promising for attenuating diabetic cardiomyopathy (DCM), although the underlying mechanisms remain largely undefined. Activation of SIRT6 and melatonin membrane receptors exerts cardioprotective effects while little is known about their roles during DCM. Using high-fat diet-streptozotocin-induced diabetic rat model, we found that prolonged diabetes significantly decreased nocturnal circulatory melatonin and heart melatonin levels, reduced the expressions of cardiac melatonin membrane receptors, and decreased myocardial SIRT6 and AMPK-PGC-1α-AKT signaling. 16 weeks of melatonin treatment inhibited the progression of DCM and the following myocardial ischemia-reperfusion (MI/R) injury by reducing mitochondrial fission, enhancing mitochondrial biogenesis and mitophagy via re-activating SIRT6 and AMPK-PGC-1α-AKT signaling. After the induction of diabetes, adeno-associated virus carrying SIRT6-specific small hairpin RNA or luzindole was delivered to the animals. We showed that SIRT6 knockdown or antagonizing melatonin receptors abolished the protective effects of melatonin against mitochondrial dysfunction as evidenced by aggravated mitochondrial fission and reduced mitochondrial biogenesis and mitophagy. Additionally, SIRT6 shRNA or luzindole inhibited melatonin-induced AMPK-PGC-1α-AKT activation as well as its cardioprotective actions. Collectively, we demonstrated that long-term melatonin treatment attenuated the progression of DCM and reduced myocardial vulnerability to MI/R injury through preserving mitochondrial quality control. Melatonin membrane receptor-mediated SIRT6-AMPK-PGC-1α-AKT axis played a key role in this process. Targeting SIRT6 with melatonin treatment may be a promising strategy for attenuating DCM and reducing myocardial vulnerability to ischemia-reperfusion injury in diabetic patients.


Subject(s)
Diabetic Cardiomyopathies/prevention & control , Melatonin/pharmacology , Mitochondria, Heart/drug effects , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Organelle Biogenesis , Sirtuins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Forkhead Box Protein O3/metabolism , Male , Mitochondria, Heart/enzymology , Mitochondria, Heart/ultrastructure , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/ultrastructure , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction , Sirtuins/genetics , Time Factors
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 563-578, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29196237

ABSTRACT

It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Heart/drug effects , Melatonin/pharmacology , Reperfusion Injury/metabolism , Acetylcysteine/metabolism , Animals , Apoptosis , Cell Membrane/metabolism , Cell Survival , Diabetes Mellitus, Experimental , Enzyme Activation , Gene Expression Regulation , Male , Myocardium/metabolism , Myocardium/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Signal Transduction , Tryptamines/pharmacology
8.
Biomed Res Int ; 2017: 7951793, 2017.
Article in English | MEDLINE | ID: mdl-28299332

ABSTRACT

It has been shown that inflammation and oxidative stress are important factors in postoperative atrial fibrillation (POAF). Angiotensin converting enzyme (ACE) and apelin have a close relationship with inflammation and oxidative stress. The effect of ACE and apelin on POAF after off-pump coronary artery bypass grafting (OPCABG) remains a question. The concentrations of serum ACE, angiotensin II (Ang II), apelin, bradykinin (BK), malondialdehyde (MDA), and C reactive protein (CRP) were measured in the perioperative period of OPCABG. The levels of serum ACE in the POAF group were higher than in the no POAF group both preoperatively and postoperatively. Apelin in the POAF group was lower than in the no POAF group. There was a correlation between serum ACE and apelin. Postoperatively, CRP and MDA in the POAF group were higher than in the no POAF group; however, there was no difference before the operation. Preoperative ACE and apelin were both significant and independent risk factors for POAF. In conclusion, the high ACE and low apelin preoperatively led to CRP and MDA being increased postoperatively, which was probably associated with POAF after OPCABG. Apelin may be a new predictor for POAF.


Subject(s)
Atrial Fibrillation/etiology , Coronary Artery Bypass, Off-Pump/adverse effects , Intercellular Signaling Peptides and Proteins/blood , Peptidyl-Dipeptidase A/blood , Aged , Angiotensin II/blood , Apelin , Atrial Fibrillation/physiopathology , Bradykinin/blood , C-Reactive Protein/metabolism , Case-Control Studies , Female , Humans , Inflammation , Male , Malondialdehyde/blood , Middle Aged , Multivariate Analysis , Oxidative Stress , Postoperative Complications , Postoperative Period , Preoperative Period , Retrospective Studies , Risk Factors
9.
Article in English | MEDLINE | ID: mdl-26640497

ABSTRACT

Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-ß. These findings suggest that CTX may be a potential drug for chronic kidney diseases.

10.
Int Immunopharmacol ; 28(1): 188-98, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26071222

ABSTRACT

BACKGROUND: Recent studies reported that Naja naja atra venom (NNAV) regulated immune function and had a therapeutic effect on adjunctive arthritis and nephropathy. We hypothesized that NNAV and its active component, neurotoxin (NTX), might inhibit skin allograft rejection. METHODS: Skin allografts were used to induce immune rejection in rats. In addition, mixed lymphocyte culture (MLC) was used to mimic immune rejection reaction in vitro. Both NNAV and NTX were orally given starting from 5days prior to skin allograft surgery. RESULTS: The results showed that oral administration of NNAV or NTX prolonged the survival of skin allografts and inhibited inflammatory response. The production of Th1 cytokines (IFN-γ, IL-2) was also suppressed. NTX inhibited T-cell proliferation and CD4(+) T cell division induced by skin allografts. NTX also showed immunosuppressive activity in mixed lymphocyte culture. Atropine alone inhibited Con A-induced proliferation of T cells and potentiated NTX' s inhibitory effects on T cells, while pilocarpine only slightly enhanced Con A-induced T cell proliferation and partially reversed the inhibitory effect of NTX. On the other hand, neither nicotine nor mecamylamine had an influence on NTX's inhibitory effects on Con A-induced T cell proliferation in vitro. NTX inhibited T cell proliferation by arresting the cell cycle at the G0/G1 phase. CONCLUSIONS: The present study revealed that NNAV and NTX suppressed skin allograft rejection by inhibiting T cell-mediated immune responses. These findings suggest both NNAV and NTX as potential immunosuppressants for preventing the immune response to skin allografts.


Subject(s)
Elapid Venoms/therapeutic use , Graft Rejection/prevention & control , Immunosuppressive Agents/therapeutic use , Neurotoxins/therapeutic use , Skin Transplantation , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Concanavalin A/pharmacology , Cytokines/metabolism , Female , Graft Rejection/immunology , Graft Survival/drug effects , Lymphocyte Culture Test, Mixed , Lymphocytes/drug effects , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Spleen/cytology , Spleen/drug effects
12.
Article in English | MEDLINE | ID: mdl-25767552

ABSTRACT

Cardiotoxin (CTX) from Naja naja atra venom (NNAV) reportedly had analgesic effect in animal models but its role in inflammation and arthritis was unknown. In this study, we investigated the analgesic, anti-inflammatory, and antiarthritic actions of orally administered CTX-IV isolated from NNAV on rodent models of inflammation and adjuvant arthritis. CTX had significant anti-inflammatory effects in models of egg white induced nonspecific inflammation, filter paper induced rat granuloma formation, and capillary osmosis tests. CTX significantly reduced the swelling of paw induced by egg white, the inflammatory exudation, and the formation of granulomas. CTX reduced the swelling of paw, the AA clinical scores, and pathological alterations of joint. CTX significantly decreased the number of the CD4 T cells and inhibited the expression of relevant proinflammatory cytokines IL-17 and IL-6. CTX significantly inhibited the secretion of proinflammatory cytokine IL-6 and reduced the level of p-STAT3 in FLS. These results suggest that CTX inhibits inflammation and inflammatory pain and adjuvant-induced arthritis. CTX may be a novel therapeutic drug for treatment of arthritis.

13.
Article in English | MEDLINE | ID: mdl-25024726

ABSTRACT

Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.

14.
Article in English | MEDLINE | ID: mdl-24876873

ABSTRACT

Previous studies reported the oral administration of Naja naja atra venom (NNAV) reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight) via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180 µ g/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...