Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Braz. j. microbiol ; 47(2): 480-488, Apr.-June 2016. tab, graf
Article in English | LILACS | ID: lil-780842

ABSTRACT

Abstract The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4–8 d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80 °C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.


Subject(s)
Chaetomium/isolation & purification , Chaetomium/metabolism , Houttuynia/microbiology , Endophytes/metabolism , Antifungal Agents/metabolism , Phylogeny , Chaetomium/classification , Chaetomium/genetics , Endophytes/isolation & purification , Endophytes/classification , Endophytes/genetics , Fungi/growth & development , Fungi/drug effects , Antifungal Agents/pharmacology
2.
Braz J Microbiol ; 47(2): 480-8, 2016.
Article in English | MEDLINE | ID: mdl-26991297

ABSTRACT

The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.


Subject(s)
Antifungal Agents/metabolism , Chaetomium/isolation & purification , Chaetomium/metabolism , Endophytes/metabolism , Houttuynia/microbiology , Antifungal Agents/pharmacology , Chaetomium/classification , Chaetomium/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Fungi/drug effects , Fungi/growth & development , Phylogeny
3.
Yi Chuan ; 35(5): 643-54, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23732672

ABSTRACT

The deduced amino acid sequences characteristics, phylogeny, and functional diverge of ω-6 and ω-3 fatty acid desaturase families were analyzed by using Bioinformatics methods. The results showed that all the deduced amino acid sequences shared three highly conserved histidine rich motifs (Hisbox). All the plastidial ω-6 and ω-3 fatty acid desaturases possessed putative N-terminal signal peptide with different amino acids. A relatively conserved hydrophobic region composed of 10 amino-acid residues was found in the middle of signal peptides, which is presumed to be the functional region of the signal peptide of these enzymes. Most of the plant microsomal ω-6 and ω-3 fatty acid desaturases (FAD2 and FAD3) contained a KKXX-like motif of endoplasmic reticulum (ER) retention signal at the C-terminus. However, no such motif was detected in safflower CtFAD2-3, CtFAD2-4, CtFAD2-5, CtFAD2-6, and CtFAD2-7, while an aromatic aa enriched signal (YKNK) was found at their C-terminus which has been reported to be both necessary and sufficient for maintaining localization of the enzymes in the ER. All the amino acid sequences were divided into four categories through phylogenetic analysis. It was suggested that ω-3 fatty acid desaturase originates in a prokaryotic lineage from ω-6 fatty acid desaturase. Both plastidial and microsomal ω-3 fatty acid desaturases could be divided into dicotyledonous and monocotyledonous subgroups, which inferred that functional differentiation of plastidial and microsomal ω-3 fatty acid desaturases had been formed before the divergence of dicotyledonous and monocotyledonous plants. Seed type and housekeeping type FAD2 diverged after the formation of dicotyledonous plants. Except for plant FAD3/plant FAD2, posterior probability values over 0.80 amino acid sites were identified among the functional differentiation subsets, which were mainly distributed at the front and back end of Hisbox I, and the front end of Hisbox II. This indicated that the variations of these amino acid sites played an important role in the size and conformation of protein functional domains and subfamily functional divergence.


Subject(s)
Biological Evolution , Fatty Acid Desaturases/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plants/classification , Plants/enzymology , Amino Acid Sequence , Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/genetics , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...