Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Front Immunol ; 15: 1415573, 2024.
Article in English | MEDLINE | ID: mdl-38835772

ABSTRACT

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Subject(s)
Dendritic Cells , Macrophages , Phagocytosis , Dendritic Cells/immunology , Humans , Phagocytosis/immunology , Animals , Macrophages/immunology , Apoptosis/immunology , Immune Tolerance , Efferocytosis
2.
Biomed Pharmacother ; 175: 116684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713951

ABSTRACT

Chinese herbs have been used to treat small-cell lung cancer (SCLC) due to their low toxicity and significant efficacy. This study focused on oridonin, a natural compound extracted from Rabdosia rubescens, and aimed to investigate its potential antitumor activity on SCLC and to evaluate the synergistic effect of combining oridonin with other small molecules. In this study, oridonin exhibited a dual effect. At lower concentrations, it suppressed the cell viability of SCLC cells (H1688 and H446). At high concentrations, oridonin induced SCLC cell apoptosis, damaged HBE cells in vitro and compromised the function of the liver and heart in vivo. The lower concentration of oridonin induced autophagy by enhancing the expression of p62 and the LC3B-II/LC3B-I ratio. This phenomenon might be associated with the activation of the protein kinase RNA-like ER kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/growth arrest and DNA damage-inducible gene 153 (CHOP/GAD153) pathway. Therefore, the combined effect of oridonin with GSK2606414 or 3- methyladenine increased apoptosis in SCLC cells and reduced tumor growth. A similar phenomenon was observed after oridonin was combined with p62 or CHOP RNA interference treatment. Simultaneously, the combination of oridonin and GSK2606414 exhibited therapeutic efficacy without manifesting adverse effects. Our findings suggest that oridonin at lower concentrations can induce autophagy by activating the PERK/eIF2α/CHOP signaling pathway. The inhibition of the PERK/eIF2α/CHOP pathway could enhance oridonin therapeutic responses by triggering apoptosis. The novel therapeutic approach of combining oridonin with a PERK inhibitor is promising as a strategy for the treatment of SCLC.


Subject(s)
Apoptosis , Autophagy , Diterpenes, Kaurane , Eukaryotic Initiation Factor-2 , Lung Neoplasms , Signal Transduction , Small Cell Lung Carcinoma , Transcription Factor CHOP , eIF-2 Kinase , Diterpenes, Kaurane/pharmacology , Autophagy/drug effects , Transcription Factor CHOP/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , eIF-2 Kinase/metabolism , Apoptosis/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism , Animals , Signal Transduction/drug effects , Mice, Nude , Mice, Inbred BALB C , Mice , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Drug Synergism , Male
3.
BMC Public Health ; 24(1): 905, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539126

ABSTRACT

BACKGROUND: Electronic health records (EHRs) are digital records of individual health information. However, their adoption and utilization remain low. This study explores the factors influencing the implementation of EHRs through a questionnaire survey to enhance individual awareness and adoption of EHRs. METHODS: A questionnaire and an expert rating scale were developed sequentially, and the consistency of the scores from five experts was calculated using Kendall's W to generate a final questionnaire. A non-parametric test was utilized to analyze differences in continuous data that did not follow a normal distribution. Categorical variables were expressed as percentages (%), the chi-square test was employed for group comparisons, and multiple logistic regression was implemented to assess individuals' awareness and adoption of EHRs. RESULTS: In total, 1,341 survey questionnaires were distributed between January and December 2022, with 1,337 valid responses (99.7%). The results indicated that the proportion of participants who were aware of EHRs and had a bachelor's degree or higher education, an income of ≥$700 per month, residence in urban areas, possessed self-care abilities, and underwent annual physical examinations was significantly higher than that without awareness of EHRs (P < 0.05), while in hearing problems and walking abilities was markedly lower than that of participants without awareness of EHRs (P < 0.05). Additionally, the proportion of individuals willing to self-manage EHRs was significantly higher than those reluctant to do so (P < 0.05) among participants with a bachelor's degree or higher education, an income of ≥$700 per month, residence in urban areas, possession of self-care abilities, annual physical examinations, hearing problems, and poor walking abilities. Age (Odds Ratio [OR] = 1.104, 95% Confidence Interval [CI] 1.001-1.028, P = 0.033), hearing problems (OR = 0.604, 95% CI 0.377-0.967, P = 0.036), self-care ability (OR = 5.881, 95% CI 1.867-18.529, P = 0.002), and annual physical examinations (OR = 3.167, 95% CI 2.31-4.34, P < 0.001) were independently associated with willingness to self-manage EHRs. Annual physical examination (OR = 2.507, 95%CI 1.585-2.669, P < 0.001) also independently made a difference to the awareness of EHRs. CONCLUSIONS: Our findings suggest that annual physical examinations, age, hearing problems, and self-care abilities are significant factors in assessing individuals' awareness and adoption of EHRs. Understanding the characteristics of individuals who are aware of or are willing to take advantage of EHRs plays a positive role in promoting their popularization and application.


Subject(s)
Electronic Health Records , Income , Humans , Surveys and Questionnaires , Logistic Models , China
4.
Vaccine ; 42(10): 2608-2620, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38472066

ABSTRACT

The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Vaccines , Viola , Swine , Animals , Mice , Gold/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Polysaccharides , Cytokines , Immunoglobulin G
5.
J Cardiovasc Electrophysiol ; 35(5): 1046-1049, 2024 May.
Article in English | MEDLINE | ID: mdl-38468182

ABSTRACT

INTRODUCTION: Left atrial appendage (LAA) closure (LAAC) is considered a viable alternative to anticoagulation therapy for stroke prevention in nonvalvular atrial fibrillation, we report a case with a less common shunt resulting from a device-related coronary artery-appendage fistula (CAAF) following LAAC. METHODS AND RESULTS: A 67-year-old male with a history of LAAC was referred to our emergency room with recurrent chest pain and palpitations and was diagnosed with ischemic angina pectoris. Subsequent coronary angiography (CAG) revealed 70% in-stent restenosis and an abnormal shunt of contrast originating from the left circumflex artery (LCA) to the LAA tip which did not exist before. The restenosis was successfully dilated using a drug-coated balloon, the procedure was safely completed without pericardial effusion. The patient had been implanted with a LAmbre occluder (Lifetech Scientific Corp.) in the previous LAAC procedure. This occluder had a lobe-disk design, and the distal umbrella was not fully opened after release, particularly in the lower portion. This could make the hooks embedded on the umbrella contact the LAA wall more tightly, possibly resulting in microperforation and coincidental impingement of the LCA. The epicardial adipose and hyperplastic tissue then chronically wrapped the perforated site, prevented blood outflow into the epicardium, and ultimately formed a CAAF. CONCLUSION: CAAF is a rare complication after LAAC but may be underestimated, especially for lobe-disk designed occluders. Therefore, CAG is perhaps necessary to detect this complication.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Aged , Humans , Male , Atrial Appendage/diagnostic imaging , Atrial Appendage/physiopathology , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Cardiac Catheterization/adverse effects , Cardiac Catheterization/instrumentation , Coronary Vessels/diagnostic imaging , Left Atrial Appendage Closure , Prosthesis Design , Septal Occluder Device/adverse effects , Treatment Outcome , Vascular Fistula/diagnostic imaging , Vascular Fistula/etiology
6.
Int J Pharm ; 653: 123929, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38387817

ABSTRACT

Oxidative stress plays a crucial role in steroid-induced osteonecrosis of the femoral head (SONFH). Although several antioxidant strategies have been investigated for treating SONFH, their antioxidant efficiencies and therapeutic effects remain unsatisfactory. Here, we developed a selenium nanoparticles/carboxymethyl chitosan/alginate (SeNPs/CMC/Alg) antioxidant hydrogel and evaluated its ability to treat SONFH. In vitro assays indicated that the SeNPs/CMC/Alg hydrogel exhibited excellent properties, such as low cytotoxicity, sustained SeNPs release, and favorable antioxidant activity. Under oxidative stress, the SeNPs/CMC/Alg hydrogel promoted reactive oxygen species (ROS) elimination and enhanced the osteogenic and proangiogenic abilities of bone marrow mesenchymal stem cells (BMSCs). After establishing a rabbit model of SONFH, the SeNPs/CMC/Alg hydrogel was transplanted into the femoral head after core decompression (CD) surgery. Radiographic and histological analyses revealed that the hydrogel treatment alleviated SONFH by eliminating ROS and promoting osteogenesis and angiogenesis compared to those in the CD and CMC/Alg groups. In vitro and in vivo studies indicated that the Wnt/ß-catenin signaling pathway was activated by the SeNPs/CMC/Alg hydrogel in both hydrogen peroxide-conditioned BMSCs and necrotic femoral heads. These findings indicate that local transplantation of the SeNPs/CMC/Alg hydrogel is beneficial for treating SONFH, as it promotes ROS elimination and activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Chitosan , Nanoparticles , Osteonecrosis , Selenium , Animals , Rabbits , Antioxidants , Selenium/pharmacology , Femur Head/pathology , Reactive Oxygen Species , Alginates/adverse effects , Chitosan/adverse effects , Hydrogels/adverse effects , Osteonecrosis/chemically induced , Osteonecrosis/drug therapy , Osteonecrosis/pathology , Steroids
7.
Clin Cardiol ; 47(2): e24228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38402548

ABSTRACT

Anemia and acute heart failure (AHF) frequently coexist. Several published studies have investigated the association of anemia with all-cause mortality and all-cause heart failure events in AHF patients, but their findings remain controversial. This study is intended to evaluate the relationship between anemia and AHF. We systematically searched PubMed, Medline, the Cochrane Library, Embase, and Elsevier's ScienceDirect databases until July 30, 2023, and selected prospective or retrospective cohort studies to evaluate anemia for AHF. A total of nine trials involving 29 587 AHF patients were eventually included. Pooled analyses demonstrated anemia is associated with a higher risk of all-cause heart failure event rate (OR: 1.82, 95% CI: 1.58-2.10, p < .01) and all-cause mortality, both for short-term (30 days) all-cause mortality (OR: 1.91, 95% CI: 1.31-2.79, p < .01) and long-term (1 year) all-cause mortality (OR: 1.72, 95% CI: 1.27-2.32, p < .01). The evidence from this meta-analysis suggested that anemia may be an independent risk factor for all-cause mortality and all-cause heart failure events in patients with AHF and might emphasize the importance of anemia correction before discharge.


Subject(s)
Anemia , Heart Failure , Humans , Prospective Studies , Retrospective Studies , Anemia/complications , Anemia/diagnosis , Anemia/epidemiology , Databases, Factual , Heart Failure/complications , Heart Failure/diagnosis , Heart Failure/epidemiology
8.
Food Chem X ; 21: 101149, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38312490

ABSTRACT

This study investigated the grafting chlorogenic acid (CA) onto myosin, utilizing various techniques including conventional method, ultrasound, microwave, and combination of ultrasound and microwave (UM). The grafting efficiency was as follows: conventional method < microwave < ultrasound < UM. The UM technique manifested the highest CA-binding capacity (80.26 µmol/g myosin) through covalent bonding, and a much shorter time was required for conjugation than conventional method. The conjugation of polyphenol significantly increased the solubility of myosin with reduced aggregation behavior, which was accompanied by structural alterations from ordered structures (α-helix and ß-sheet) to disordered forms. The emulsion stabilized by UM-myosin-CA conjugate exhibited the most homogeneous microstructure with favorable creaming stability. Moreover, the resulting emulsion presented strong oxidation resistance and storage stability. These results illustrate the promising potential of employing CA-grafted myosin, especially when processed using the UM technique, in the development of highly efficient emulsifiers.

9.
Int Urol Nephrol ; 56(3): 1093-1101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37626163

ABSTRACT

PURPOSE: The development of roxadustat is a standard treatment for renal anemia, and multiple clinical trials have proved its safety and efficacy. However, less information is available from trials of the population with diabetic nephropathy (DN). This study aimed to determine whether roxadustat is effective for treating DN. METHODS: This was a single-center, retrospective, institutional review board-approved cohort study. The patients with DN were chosen and given roxadustat or erythropoietin (EPO) for 8 weeks. The mean hemoglobin (Hb) level after 8 weeks of treatment served as the primary outcome. Alterations in the iron index and lipid levels were considered secondary objectives. Sub-group analysis was performed to observe the impact of inflammation and glycemic status on Hb. RESULTS: A total of 80 patients were enrolled, 40 in each group. After 8 weeks of treatment, the Hb levels in the roxadustat group were higher than those in the control group. The number of patients who achieved Hb response was higher in the roxadustat group than in the control group (77.5% versus 27.5%; P < 0.001). In addition to lowering total cholesterol and low-density lipoprotein cholesterol, roxadustat decreased ferritin and elevated total iron-binding capacity. Compared to the control group, roxadustat was more beneficial for patients with an inflammatory condition and poor glycemic control. CONCLUSIONS: Roxadustat treatment remarkably corrected anemia in patients with DN, and its effectiveness was unaffected by inflammation or glycemic control levels. In addition, roxadustat can also reduce a patient's blood lipid level and enhance the body's use of iron. CLINICAL TRIAL REGISTRATION: ChiCTR2200057232.


Subject(s)
Anemia , Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/complications , Diabetic Nephropathies/drug therapy , Cohort Studies , Retrospective Studies , Renal Insufficiency, Chronic/complications , Anemia/drug therapy , Anemia/etiology , Iron/therapeutic use , Glycine/therapeutic use , Isoquinolines/therapeutic use , Cholesterol, LDL , Inflammation/complications , Hemoglobins/analysis , Diabetes Mellitus/drug therapy
10.
Talanta ; 270: 125571, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38154354

ABSTRACT

Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Humans , Antioxidants/pharmacology , Myocardial Infarction/diagnostic imaging , Myocardium , Diagnostic Imaging , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Peroxynitrous Acid , Fluorescent Dyes
11.
Eur J Med Res ; 28(1): 489, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936193

ABSTRACT

BACKGROUND: Roxadustat is an oral hypoxia inducing factor-prolyl hydroxylase inhibitor (HIF-PHI) that regulates iron metabolism in patients with chronic kidney disease (CKD) primarily by reducing hepcidin levels and mobilizing internal iron stores. More data are needed to demonstrate the efficacy of roxadustat in regulating iron metabolism in patients with peritoneal dialysis (PD) compared with erythropoiesis stimulating agents (ESAs). METHODS: This prospective cohort study enrolled PD patients with a mean hemoglobin level of 60-100 g/L. All subjects were randomized into two groups at a ratio of 2:1 the roxadustat group (106 cases), and the ESA group (53 cases). The primary endpoint was the change in the iron biomarker levels and the proportion of patients with absolute iron deficiency and functional iron deficiency. RESULTS: Compared with ESAs, roxadustat significantly decreased hepcidin level (difference, - 20.09 ng/mL; 95% CI, - 30.26 to - 9.92), attenuated the increase in serum soluble transferrin receptor (sTFR) level (difference, - 7.87 nmol/L; 95% CI, - 12.11 to - 3.64), and reduced the proportion of patients with functional iron deficiency (roxadustat, 11.43%; ESA, 33.33%). There was no significant difference in safety of the two groups over the duration of the study. CONCLUSIONS: Compared with ESA group, roxadustat group showed significant differences in all iron biomarker levels except serum ferritin (sFt) and transferrin saturation (TSAT). These results suggest that roxadustat was superior to ESAs as a therapy for iron metabolism in PD patients. TRIAL REGISTRATION: This study completed Chinese Clinical Trial Registration on March 4, 2022 (registration number: ChiCTR2200057231).


Subject(s)
Glycine , Iron Deficiencies , Isoquinolines , Humans , Biomarkers , Glycine/pharmacology , Hematinics , Hepcidins , Iron/metabolism , Iron Deficiencies/drug therapy , Isoquinolines/pharmacology , Peritoneal Dialysis , Prospective Studies
12.
Herz ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37923966

ABSTRACT

BACKGROUND: Coronary computed tomography-derived fractional flow reserve (FFR-CT) assesses whether coronary artery lesions will result in myocardial ischemia. This study aimed to evaluate the predictive value of FFR-CT for cardiovascular events in patients with coronary artery disease (CAD). METHODS: Data were collected retrospectively from patients with CAD who underwent FFR-CT at our hospital from January 2020 to February 2022 (1-year average follow-up). Patients were divided into ischemic (FFR-CT ≤ 0.80) and non-ischemic (FFR-CT > 0.80) groups. The incidence of endpoint events (cardiac death, acute myocardial infarction, unplanned revascularization, unstable angina, and stable angina) was calculated. The FFR-CT value was correlated with endpoint events using Cox regression models and Kaplan-Meier survival curves. RESULTS: We recruited 134 patients (93 [69.4%] and 41 [30.6%] patients in the ischemic and non-ischemic groups, respectively). The ischemic group had a higher proportion of men, patients with type 2 diabetes and hypertension, and patients taking antiplatelet drugs and ß­blockers than did the non-ischemic group (all p < 0.05), whereas other parameters were comparable. Multivariate Cox regression analysis revealed no significant differences in cardiac death, acute myocardial infarction, unplanned revascularization, and unstable angina between the groups. The incidence of stable angina events (hazard ratio: 3.092, 95% confidence interval: 1.362-7.022, p = 0.007) was significantly higher in the ischemic group. Kaplan-Meier survival analysis revealed a significant difference in event-free survival for stable angina between the groups (p = 0.002). CONCLUSION: In patients with CAD, FFR-CT showed an independent predictive value for stable angina within 1 year of examination.

13.
BMC Microbiol ; 23(1): 320, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924005

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses. RESULTS: Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and performed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leveraging the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, and Monoglobus. CONCLUSIONS: Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.


Subject(s)
Coronary Artery Disease , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnosis , Coronary Artery Disease/metabolism , Transcriptome , Bacteria/genetics , Biomarkers
14.
ACS Biomater Sci Eng ; 9(12): 6821-6834, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38011305

ABSTRACT

In recent years, conductive biomaterials have been widely used to enhance peripheral nerve regeneration. However, most biomaterials use electronic conductors to increase the conductivity of materials. As information carriers, electronic conductors always transmit discontinuous electrical signals, while biological systems essentially transmit continuous signals through ions. Herein, an ion-based conductive hydrogel was fabricated by simple copolymerization of the zwitterionic monomer sulfobetin methacrylate and hydroxyethyl methacrylate. Benefiting from the excellent mechanical stability, suitable electrical conductivity, and good cytocompatibility of the zwitterionic hydrogel, the Schwann cells cultured on the hydrogel could grow and proliferate better, and dorsal root ganglian had an increased neurite length. The zwitterionic hydrogel-based nerve guidance conduits were then implanted into a 10 mm sciatic nerve defect model in rats. Morphological analysis and electrophysiological data showed that the grafts achieved a regeneration effect close to that of the autologous nerve. Overall, our developed zwitterionic hydrogel facilitates efficient and efficacious peripheral nerve regeneration by mimicking the electrical and mechanical properties of the extracellular matrix and creating a suitable regeneration microenvironment, providing a new material reserve for the repair of peripheral nerve injury.


Subject(s)
Biocompatible Materials , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Biocompatible Materials/pharmacology , Sciatic Nerve/physiology , Tissue Scaffolds , Nerve Regeneration/physiology
15.
Biol Direct ; 18(1): 63, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37807075

ABSTRACT

BACKGROUND: Anthracyclines including doxorubicin are essential components of many cancer chemotherapy regimens, but their cardiotoxicity severely limits their use. New strategies for treating anthracycline-induced cardiotoxicity (AIC) are still needed. Anthracycline-induced DNA double-strand break (DSB) is the major cause of its cardiotoxicity. However, DSB-based drug screening for AIC has not been performed possibly due to the limited throughput of common assays for detecting DSB. To discover new therapeutic candidates for AIC, here we established a method to rapidly visualize and accurately evaluate the intranuclear anthracycline-induced DSB, and performed a screening for DSB inhibitors. RESULTS: First, we constructed a cardiomyocyte cell line stably expressing EGFP-53BP1, in which the formation of EGFP-53BP1 foci faithfully marked the doxorubicin-induced DSB, providing a faster and visible approach to detecting DSB. To quantify the DSB, we used a deep learning-based image analysis method, which showed the better ability to distinguish different cell populations undergoing different treatments of doxorubicin or reference compounds, compared with the traditional threshold-based method. Subsequently, we applied the deep learning-assisted high-content screening method to 315 compounds and found three compounds (kaempferol, kaempferide, and isoliquiritigenin) that exert cardioprotective effects in vitro. Among them, the protective effect of isoliquiritigenin is accompanied by the up-regulation of HO-1, down-regulation of peroxynitrite and topo II, and the alleviation of doxorubicin-induced DSB and apoptosis. The results of animal experiments also showed that isoliquiritigenin maintained the myocardial tissue structure and cardiac function in vivo. Moreover, isoliquiritigenin did not affect the killing of HeLa and MDA-MB-436 cancer cells by doxorubicin and thus has the potential to be a lead compound to exert cardioprotective effects without affecting the antitumor effect of doxorubicin. CONCLUSIONS: Our findings provided a new method for the drug discovery for AIC, which combines phenotypic screening with artificial intelligence. The results suggested that isoliquiritigenin as an inhibitor of DSB may be a promising drug candidate for AIC.


Subject(s)
Cardiotoxicity , Deep Learning , Animals , Cardiotoxicity/drug therapy , Artificial Intelligence , Doxorubicin/toxicity , Antibiotics, Antineoplastic/toxicity , Anthracyclines/therapeutic use , DNA
16.
Medicina (Kaunas) ; 59(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37893458

ABSTRACT

Background and Objectives: With the growing incidence and disability associated with myocardial infarction (MI), there is an increasing focus on cardiac rehabilitation post-MI. Kuanxiongzhuyu decoction (KXZY), a traditional Chinese herbal formula, has been used in the rehabilitation of patients after MI. However, the chemical composition, protective effects, and underlying mechanism of KXZY remain unclear. Materials and Methods: In this study, the compounds in KXZY were identified using a high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method. Based on the compounds identified in the KXZY, we predictively selected the potential targets of MI and then constructed a protein-protein interaction (PPI) network to identify the key targets. Furthermore, the DAVID database was used for the GO and KEGG analyses, and molecular docking was used to verify the key targets. Finally, the cardioprotective effects and mechanism of KXZY were investigated in post-MI mice. Results: A total of 193 chemical compounds of KXZY were identified by HPLC-MS. In total, 228 potential targets were obtained by the prediction analysis. The functional enrichment studies and PPI network showed that the targets were largely associated with AKT-pathway-related apoptosis. The molecular docking verified that isoguanosine and adenosine exhibited excellent binding to the AKT. In vivo, KXZY significantly alleviated cardiac dysfunction and suppressed AKT phosphorylation. Furthermore, KXZY significantly increased the expression of the antiapoptotic proteins Bcl-2 and Bcl-xl and decreased the expression of the proapoptotic protein BAD. Conclusions: In conclusion, the network pharmacological and experimental evidence suggests that KXZY manifests anti-cardiac dysfunction behavior by alleviating cardiomyocyte apoptosis via the AKT pathway in MI and, thus, holds promising therapeutic potential.


Subject(s)
Cardiac Rehabilitation , Myocardial Infarction , Humans , Animals , Mice , Network Pharmacology , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Myocardial Infarction/complications , Myocardial Infarction/drug therapy
17.
J Transl Med ; 21(1): 544, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580750

ABSTRACT

BACKGROUND: Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS: PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS: The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-ß1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION: LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.


Subject(s)
Atrial Fibrillation , Animals , Mice , Atrial Fibrillation/genetics , Fibrosis , Heart Atria/pathology , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Tumor Necrosis Factors/metabolism , Humans
18.
Neural Regen Res ; 18(12): 2757-2761, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37449641

ABSTRACT

Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults. Peripheral axotomy of motor neurons results in the retraction of dendritic arbors, and the dendritic arbor can be re-expanded when reinnervation is allowed. RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration. However, the role of RhoA in dendrite degeneration and regeneration is unknown. In this study, we explored the potential role of RhoA in dendrites. A line of motor neuronal RhoA conditional knockout mice was developed by crossbreeding HB9Cre+ mice with RhoAflox/flox mice. We established two models for assaying dendrite degeneration and regeneration, in which the brachial plexus was transection or crush injured, respectively. We found that at 28 days after brachial plexus transection, the density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice. Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28-56 days. The density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice. These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.

19.
Phytother Res ; 37(10): 4607-4620, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37380363

ABSTRACT

Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-ß-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/ß, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.

20.
Front Pharmacol ; 14: 1161243, 2023.
Article in English | MEDLINE | ID: mdl-37305530

ABSTRACT

Immune checkpoint inhibitors (ICIs), including cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and its ligand 1 (PD-L1), have improved the survival in multiple types of cancers; however, ICIs may cause cardiovascular toxicity. Although rare, ICI-mediated cardiotoxicity is an extremely serious complication with a relatively high mortality. In this review, we discuss the underlying mechanism and clinical manifestations of cardiovascular toxicity induced by ICIs. According to previous studies, multiple signaling pathways are involved in myocarditis induced by ICIs. Further, we summarize the clinical trials of drugs for the treatment of ICI-associated myocarditis. Although these drugs have shown the beneficial effects of alleviating cardiac function and reducing mortality rates, their efficacy is not optimal. Finally, we discuss the therapeutic potential of some novel compounds as well as the underlying mechanisms of their action.

SELECTION OF CITATIONS
SEARCH DETAIL
...