Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(10): uhad182, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37885818

ABSTRACT

Melon (Cucumis melo L.) is an important vegetable crop that has an extensive history of cultivation. However, the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet available. Here we report a chromosome-level T2T genome assembly for 821 (C. melo ssp. agrestis var. acidulus), a semi-wild melon with two haplotypes of ~373 Mb and ~364 Mb, respectively. Comparative genome analysis discovered a significant number of structural variants (SVs) between melo (C. melo ssp. melo) and agrestis (C. melo ssp. agrestis) genomes, including a copy number variation located in the ToLCNDV resistance locus on chromosome 11. Genome-wide association studies detected a significant signal associated with climacteric ripening and identified one candidate gene CM_ac12g14720.1 (CmABA2), encoding a cytoplasmic short chain dehydrogenase/reductase, which controls the biosynthesis of abscisic acid. This study provides valuable genetic resources for future research on melon breeding.

2.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37569702

ABSTRACT

WUSCHEL-related homeobox (WOX) proteins are very important in controlling plant development and stress responses. However, the WOX family members and their role in response to abiotic stresses are largely unknown in melon (Cucumis melo L.). In this study, 11 WOX (CmWOX) transcript factors with conserved WUS and homeobox motif were identified and characterized, and subdivided into modern clade, ancient clade and intermediate clade based on bioinformatic and phylogenetic analysis. Evolutionary analysis revealed that the CmWOX family showed protein variations in Arabidopsis, tomato, cucumber, melon and rice. Alignment of protein sequences uncovered that all CmWOXs had the typical homeodomain, which consisted of conserved amino acids. Cis-element analysis showed that CmWOX genes may response to abiotic stress. RNA-seq and qRT-PCR results further revealed that the expression of partially CmWOX genes are associated with cold and drought. CmWOX13a and CmWOX13b were constitutively expressed under abiotic stresses, CmWOX4 may play a role in abiotic processes during plant development. Taken together, this study offers new perspectives on the CmWOX family's interaction and provides the framework for research on the molecular functions of CmWOX genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cucumis melo , Cucurbitaceae , Genes, Homeobox , Cucumis melo/genetics , Phylogeny , Cucurbitaceae/genetics , Multigene Family , Genes, Plant , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Arabidopsis Proteins/genetics
3.
Article in English | MEDLINE | ID: mdl-36612949

ABSTRACT

Urban fires threaten the economic stability and safety of urban residents. Therefore, the limited number of fire stations should cover as many places as possible. Moreover, places with high fire risk should be covered by more fire stations. To optimize the location of urban fire stations, we construct a multi-objective optimization model for fire station planning based on the backup coverage model. The improved value of environment and ecosystem (SAVEE) model is introduced to quantify the spatial heterogeneity of urban fires. The main city zone of Wuhan is used as the study area to validate the proposed method. The results show that, considering the existing fire stations (85 facilities), the proposed model achieves a significant 38.56% in high-risk areas that can be covered by more than one fire station. If the existing fire stations are not considered when building 95 fire stations, the proposed model can achieve coverage of 50.07% in high-risk areas by utilizing more than one fire station. As a result, the proposed backup coverage model would perform better if the protection of high-risk areas is improved with as few fire stations as possible to guarantee more places covered.


Subject(s)
Ecosystem , Cities
4.
BMC Plant Biol ; 21(1): 126, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658004

ABSTRACT

BACKGROUND: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS: Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION: The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.


Subject(s)
Cucumis melo/genetics , Fruit/genetics , Genes, Plant , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant , Cucumis melo/growth & development , Fruit/growth & development , Genome, Plant , Polymorphism, Single Nucleotide , Recombination, Genetic , Whole Genome Sequencing
5.
Hortic Res ; 7(1): 187, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33328460

ABSTRACT

Melon is as an alternative model to understand fruit ripening due to the coexistence of climacteric and non-climacteric varieties within the same species, allowing the study of the processes that regulate this complex trait with genetic approaches. We phenotyped a population of recombinant inbred lines (RILs), obtained by crossing a climacteric (Védrantais, cantalupensis type) and a non-climcteric variety (Piel de Sapo T111, inodorus type), for traits related to climacteric maturation and ethylene production. Individuals in the RIL population exhibited various combinations of phenotypes that differed in the amount of ethylene produced, the early onset of ethylene production, and other phenotypes associated with ripening. We characterized a major QTL on chromosome 8, ETHQV8.1, which is sufficient to activate climacteric ripening, and other minor QTLs that may modulate the climacteric response. The ETHQV8.1 allele was validated by using two reciprocal introgression line populations generated by crossing Védrantais and Piel de Sapo and analyzing the ETHQV8.1 region in each of the genetic backgrounds. A Genome-wide association study (GWAS) using 211 accessions of the ssp. melo further identified two regions on chromosome 8 associated with the production of aromas, one of these regions overlapping with the 154.1 kb interval containing ETHQV8.1. The ETHQV8.1 region contains several candidate genes that may be related to fruit ripening. This work sheds light into the regulation mechanisms of a complex trait such as fruit ripening.

6.
Sci Rep ; 10(1): 20456, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235270

ABSTRACT

Phytophthora blight is one of the most serious diseases affecting melon (Cucumis melo) production. Due to the lack of highly resistant germplasms, the progress on disease-resistant research is slow. To understand the genetics of melon resistance to Phytophthora capsici, an F2 population containing 498 individuals was developed by crossing susceptible line E31 to highly resistant line ZQK9. Genetic analysis indicated that the resistance in ZQK9 was controlled by a dominant gene, tentatively named MePhyto. Through bulked-segregant analysis (BSA-Seq) and chromosome walking techniques, the MePhyto gene was mapped to a 52.44 kb interval on chromosome 12. In this region, there were eight genes and their expression patterns were validated by qRT-PCR. Among them, one wall-associated receptor kinase (WAK) gene MELO3C002430 was significantly induced in ZQK9 after P. capsici inoculation, but not in E31. Based on the non-synonymous mutation site in MELO3C002430, a cleaved amplified polymorphic sequence (CAPS) marker, CAPS2430, was developed and this maker was co-segregated with MePhyto in both F2 population and a collection of 36 melon accessions. Thus MELO3C002430 was considered as the candidate gene and CAPS2430 was a promising marker for marker-assisted selection (MAS) in breeding. These results lay a foundation for revealing the resistance mechanism of melon to P. capsici.


Subject(s)
Chromosome Walking/methods , Cucurbitaceae/growth & development , Disease Resistance , Plant Proteins/genetics , Cucurbitaceae/genetics , Cucurbitaceae/parasitology , Gene Expression Regulation, Plant , Genetic Linkage , Genetic Markers , Models, Molecular , Mutation , Phytophthora/pathogenicity , Plant Breeding , Plant Diseases/parasitology , Plant Proteins/chemistry , Protein Structure, Tertiary
7.
PLoS One ; 15(2): e0227284, 2020.
Article in English | MEDLINE | ID: mdl-32050262

ABSTRACT

Phytophthora blight caused by Phytophthora capsici is a devastating disease for melon plant. However, the underlying resistance mechanisms are still poorly understood. In this study, the transcriptome differences between the resistant ZQK9 and susceptible E31 at 0, 3, and 5 days post-inoculation (dpi) were identified by RNA-seq. A total of 1,195 and 6,595 differentially expressed genes (DEGs) were identified in ZQK9 and E31, respectively. P. capsici infection triggered massive transcript changes in the inoculated tissues. Genes related to plant defense responses were activated, which was reflected by a lot of up-regulated DEGs involved in pathogenesis-related (PR) genes, hormones biosynthesis and signal transduction, secondary metabolites biosynthesis and cell wall modification in resistant ZQK9. The dataset generated in this study may provide a basis for identifying candidate resistant genes in melon against P. capsici and lay a foundation for further research on the molecular mechanisms.


Subject(s)
Cucurbitaceae/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Transcriptome/genetics , Gene Expression Profiling/methods , Phytophthora/growth & development
8.
Nat Genet ; 51(11): 1607-1615, 2019 11.
Article in English | MEDLINE | ID: mdl-31676864

ABSTRACT

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.


Subject(s)
Chromosome Mapping , Cucurbitaceae/genetics , Domestication , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Cucurbitaceae/classification , Cucurbitaceae/growth & development , Genome-Wide Association Study , Genomics , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...