Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Intensive Med ; 4(1): 62-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38263962

ABSTRACT

Sepsis and septic shock remain the leading causes of death in intensive care units. Some patients with sepsis fail to respond to routine treatment and rapidly progress to refractory respiratory and circulatory failure, necessitating extracorporeal membrane oxygenation (ECMO). However, the role of ECMO in adult patients with sepsis has not been fully established. According to existing studies, ECMO may be a viable salvage therapy in carefully selected adult patients with sepsis. The choice of venovenous, venoarterial, or hybrid ECMO modes is primarily determined by the patient's oxygenation and hemodynamics (distributive shock with preserved cardiac output, septic cardiomyopathy (left, right, or biventricular heart failure), or right ventricular failure caused by acute respiratory distress syndrome). Veno-venous ECMO can be used in patients with sepsis and severe acute respiratory distress syndrome when conventional mechanical ventilation fails, and early application of veno-arterial ECMO in patients with sepsis-induced refractory cardiogenic shock may be critical in improving their chances of survival. When ECMO is indicated, the choice of an appropriate mode and determination of the optimal timing of initiation and weaning are critical, particularly in an experienced ECMO center. Furthermore, some special issues, such as ECMO flow, anticoagulation, and antibiotic therapy, should be noted during the management of ECMO support.

2.
Nat Nanotechnol ; 18(4): 403-411, 2023 04.
Article in English | MEDLINE | ID: mdl-36864128

ABSTRACT

The health risks of exposure to 'eco-friendly' biodegradable plastics of anthropogenic origin and their effects on the gastrointestinal tract are largely unknown. Here we demonstrate that the enzymatic hydrolysis of polylactic acid microplastics generated nanoplastic particles by competing for triglyceride-degrading lipase during gastrointestinal processes. Nanoparticle oligomers were formed by hydrophobically driven self-aggregation. In a mouse model, polylactic acid oligomers and their nanoparticles bioaccumulated in the liver, intestine and brain. Hydrolysed oligomers caused intestinal damage and acute inflammation. A large-scale pharmacophore model revealed that oligomers interacted with matrix metallopeptidase 12. Mechanistically, high binding affinity (Kd = 13.3 µmol l-1) of oligomers to the catalytic zinc-ion finger domain led to matrix metallopeptidase 12 inactivation, which might mediate the adverse bowel inflammatory effects after exposure to polylactic acid oligomers. Biodegradable plastics are considered to be a solution to address environmental plastic pollution. Thus, understanding the gastrointestinal fates and toxicities of bioplastics will provide insights into potential health risks.


Subject(s)
Biodegradable Plastics , Animals , Mice , Polyesters , Metalloproteases , Inflammation/chemically induced
3.
Comput Biol Med ; 154: 106607, 2023 03.
Article in English | MEDLINE | ID: mdl-36731363

ABSTRACT

Network pharmacology is widely used to predict the mechanism of traditional Chinese medicines (TCM), but the framework in traditional network pharmacology analysis ignores the relationship between the concentration of components and drug efficacy. Lanqin oral solution (LOS) is a TCM formulation that widely used in the clinical treatment of pharyngitis, but its pharmacodynamic mechanism is still unknown. The present study was designed to elaborate the anti-inflammatory mechanism of LOS based on the quality markers (Q-markers). The efficacy of LOS was correlated with the fingerprint common peaks by chemometrics to select key peaks, and the Q-markers were further confirmed by mass spectrometry. Network pharmacology analysis was performed based on the chosen Q-markers to elaborate the potential pharmacodynamic mechanisms. Four efficacy-related chromatographic peaks were screened by the novel competitive adaptive reweighted sampling (CARS) spectrum-effect relationship analysis and series of other chemometrics methods. Four peaks were further characterized as the Q-markers in the LOS by mass spectrometry, i.e., geniposide, berberine, palmatine and baicalin. The ingredient-target network demonstrated that the LOS showed more impact on the NF-κB signaling pathway to elicit anti-inflammatory ability. Overall, the present study has introduced CARS into the spectrum-effect relationship analysis for the first time, which complemented the commonly applied chemometric methods. The network established based on the screened Q-markers was highly interpretable and successfully achieved the prediction of the anti-inflammatory mechanism of LOS. The proposed workflow provides a systematic method for exploring the mechanism of TCM based on identifying efficacy indicators. More importantly, it offers a reference for clarifying the mechanisms for other TCM formulations.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Network Pharmacology , Medicine, Chinese Traditional , Anti-Inflammatory Agents/pharmacology
4.
Angew Chem Int Ed Engl ; 60(21): 12020-12026, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33682300

ABSTRACT

Serotonin N-acetyltransferase (SNAT) is the key rate-limiting enzyme in melatonin biosynthesis. It mediates melatonin biosynthesis in plants by using serotonin and 5-methoxytryptamine (5-MT), but little is known of its underlying mechanisms. Herein, we present a detailed reaction mechanism of a SNAT from Oryza sativa through combined structural and molecular dynamics (MD) analysis. We report the crystal structures of plant SNAT in the apo and binary/ternary complex forms with acetyl-CoA (AcCoA), serotonin, and 5-MT. OsSNAT exhibits a unique enzymatically active dimeric fold not found in the known structures of arylalkylamine N-acetyltransferase (AANAT) family. The key residues W188, D189, D226, N220, and Y233 located around the active pocket are important in catalysis, confirmed by site-directed mutagenesis. Combined with MD simulations, we hypothesize a novel plausible catalytic mechanism in which D226 and Y233 function as catalytic base and acid during the acetyl-transfer reaction.


Subject(s)
Arylalkylamine N-Acetyltransferase/chemistry , Plant Proteins/chemistry , 5-Methoxytryptamine/chemistry , 5-Methoxytryptamine/metabolism , Acetyl Coenzyme A/chemistry , Acetyl Coenzyme A/metabolism , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Hydrogen Bonding , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Oryza/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Serotonin/chemistry , Serotonin/metabolism
5.
Sci Rep ; 10(1): 141, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924820

ABSTRACT

1ß-hydroxy alantolactone, a sesquiterpene lactone, exhibits potent anti-inflammatory and anticancer activities. Recently, it has been found to target UbcH5s by covalently bonding with Cys85 specifically, but the exact molecular basis remains unclear. Here, we analyzed the structural specificity of the catalytic site of UbcH5s by comparing them with other E2 proteins. Molecular dynamics was performed to detect the structural stability of the catalytic site. Docking method was then used to predict conformations of ligand docked at the catalytic site of UbcH5s. The electrostatic surface and charge distribution of ligand and proteins were analyzed by quantitative calculation. Molecular dynamics was used to detect the stability of docking complexes of 1ß-hydroxy alantolactone and UbcH5s, the covalently bonded intermediates and the products. The QM/MM methodology was used to calculate the free energy barrier of hydrogen transfer and formation of covalent bond between 15-position carbon of ligand and Cys85. Results revealed that the structure of the catalytic site is stable, and 1ß-hydroxy alantolactone can dock at the catalytic site with correct conformation. Molecular dynamics further demonstrates that 1ß-hydroxy alantolactone can steadily combine with UbcH5s. Intermediate and product of catalytic reaction are also certified to be stable. Besides, Asp112 and Asn114 function as anchors to fix ligand, ensuring it steadily docked at catalytic site to complete covalent reaction. More importantly, we have found that Cys85 of UbcH5c is more efficient to form a covalent bond with the ligand in comparison with UbcH5a and UbcH5b. Our results successfully explained the mechanism of 1ß-hydroxy alantolactone covalently bonding with UbcH5s. Such molecular mechanism may provide a better insight into the molecular development or modification for ubiquitin-related drugs.


Subject(s)
Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Sesquiterpenes/pharmacology , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Amino Acid Sequence , Catalytic Domain , Enzyme Inhibitors/metabolism , Humans , Sequence Alignment , Sesquiterpenes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism
6.
Article in English | MEDLINE | ID: mdl-27042190

ABSTRACT

The main purpose of this study was to investigate the protective effects of total isoflavones from Radix Puerariae (PTIF) in diabetic rats. Diabetes was induced by a high-fat diet and intraperitoneal injection of low-dose streptozotocin (STZ; 40 mg/kg). At 26 weeks onwards, PTIF 421 mg/kg was administrated to the rats once daily consecutively for 10 weeks. Metabolic profiling changes were analyzed by Ultraperformance Liquid Chromatography-Quadrupole-Exactive Orbitrap-Mass Spectrometry (UPLC-Q-Exactive Orbitrap-MS). The principal component discriminant analysis (PCA-DA), partial least-squares discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used for multivariate analysis. Moreover, free amino acids in serum were determined by high-performance liquid chromatography with fluorescence detector (HPLC-FLD). Additionally, oxidative stress and inflammatory cytokines were evaluated. Eleven potential metabolite biomarkers, which are mainly related to the coagulation, lipid metabolism, and amino acid metabolism, have been identified. PCA-DA scores plots indicated that biochemical changes in diabetic rats were gradually restored to normal after administration of PTIF. Furthermore, the levels of BCAAs, glutamate, arginine, and tyrosine were significantly increased in diabetic rats. Treatment with PTIF could regulate the disturbed amino acid metabolism. Consequently, PTIF has great therapeutic potential in the treatment of DM by improving metabolism disorders and inhibiting oxidative damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...