Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
World J Gastrointest Surg ; 16(6): 1825-1834, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983318

ABSTRACT

BACKGROUND: Application of indocyanine green (ICG) fluorescence has led to new developments in gastrointestinal surgery. However, little is known about the use of ICG for the diagnosis of postoperative gut leakage (GL). In addition, there is a lack of rapid and intuitive methods to definitively diagnose postoperative GL. AIM: To investigate the effect of ICG in the diagnosis of anastomotic leakage in a surgical rat GL model and evaluate its diagnostic value in colorectal surgery patients. METHODS: Sixteen rats were divided into two groups: GL group (n = 8) and sham group (n = 8). Approximately 0.5 mL of ICG (2.5 mg/mL) was intravenously injected postoperatively. The peritoneal fluid was collected for the fluorescence test at 24 and 48 h. Six patients with rectal cancer who had undergone laparoscopic rectal cancer resection plus enterostomies were injected with 10 mL of ICG (2.5 mg/mL) on postoperative day 1. Their ostomy fluids were collected 24 h after ICG injection to identify the possibility of the ICG excreting from the peripheral veins to the enterostomy stoma. Participants who had undergone colectomy or rectal cancer resection were enrolled in the diagnostic test. The peritoneal fluids from drainage were collected 24 h after ICG injection. The ICG fluorescence test was conducted using OptoMedic endoscopy along with a near-infrared fluorescent imaging system. RESULTS: The peritoneal fluids from the GL group showed ICG-dependent green fluorescence in contrast to the sham group. Six samples of ostomy fluids showed green fluorescence, indicating the possibility of ICG excreting from the peripheral veins to the enterostomy stoma in patients. The peritoneal fluid ICG test exhibited a sensitivity of 100% and a specificity of 83.3% for the diagnosis of GL. The positive predictive value was 71.4%, while the negative predictive value was 100%. The likelihood ratios were 6.0 for a positive test result and 0 for a negative result. CONCLUSION: The postoperative ICG test in a drainage tube is a valuable and simple technique for the diagnosis of GL. Hence, it should be employed in clinical settings in patients with suspected GL.

2.
Small ; : e2404734, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966904

ABSTRACT

The morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement. Meanwhile, the nucleation and crystallization time of the donor is earlier than that of the acceptors after introducing BTP-eC9, which is beneficial for obtaining a better vertical structural phase separation. The exciton dissociation, charge transport, and charge collection are promoted effectively by the optimized morphology of the active layer, which improves the short-circuit current density and filling factor. After introducing BTP-eC9, the power conversion efficiencies (PCEs) of the ternary OSCs are improved from 17.31% to 18.15%. The PCE is further improved to 18.39% by introducing gold nanopyramid (Au NBPs) into the hole transport layer to improve photon utilization efficiency. This work indicates that the morphology can be optimized by selecting a highly crystalline third component to regulate the nucleation and crystallization progress of the acceptor and donor molecules.

4.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866294

ABSTRACT

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Subject(s)
Metals, Heavy , Muramidase , Wastewater , Metals, Heavy/chemistry , Wastewater/chemistry , Animals , Muramidase/chemistry , Muramidase/isolation & purification , Muramidase/metabolism , Transglutaminases/chemistry , Transglutaminases/metabolism , Transglutaminases/isolation & purification , Wool/chemistry , Water Purification/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Adsorption , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/isolation & purification , Amyloidogenic Proteins/metabolism , Wool Fiber , Protein Aggregates , Amyloid/chemistry
5.
Plants (Basel) ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891365

ABSTRACT

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

6.
Acta Biomater ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871203

ABSTRACT

Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.

7.
Sci Adv ; 10(26): eado5460, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941466

ABSTRACT

The nanoscale morphology of the photoactive layer notably impacts the performance of organic solar cells (OSCs). Conventional methods to tune the morphology are typically chemical approaches that adjust the properties (such as solubility and miscibility) of the active components including donor, acceptor, and/or additive. Here, we demonstrate a completely different approach by applying an external electric field (EEF) on the active layer during the wet coating. The EEF-coating method is perfectly compatible with an ambient blade coating using environmentally friendly solvents, which are essential requirements for industrial production of OSCs. A record 18.6% efficiency is achieved using the EEF coating, which is the best value for open-air, blade-coated OSCs to date. Our findings suggest broad material applicability and attribute-enhanced performance to EEF-induced fiber formation and long-range ordering of microstructures of acceptor domains. This technique offers an effective method for producing high-performance OSCs, especially suited for industry OSC production based on open-air printing.

8.
Int J Biol Macromol ; 267(Pt 2): 131656, 2024 May.
Article in English | MEDLINE | ID: mdl-38636749

ABSTRACT

The gut microbiota plays a significant role in the pathogenesis and remission of inflammatory bowel disease. However, conventional antibiotic therapies may alter microbial ecology and lead to dysbiosis of the gut microbiome, which greatly limits therapeutic efficacy. To address this challenge, novel nanomicelles that couple inulin with levofloxacin via disulfide bonds for the treatment of salmonellosis were developed in this study. Owing to their H2S-responsiveness, the nanomicelles can target the inflamed colon and rapidly release levofloxacin to selectively fight against enteric pathogens. Moreover, the embedded inulin can serve as prebiotic fiber to increase the amount of Bifidobacteria and Lactobacilli in mice with salmonellosis, thus maintaining the intestinal mechanical barrier and regulating the balance of the intestinal flora. Therefore, multifunctional nanomicelles had a better curative effect than pure levofloxacin on ameliorating inflammation in vivo. The pathogen-targeted glycovesicle represents a promising drug delivery platform to maximize the efficacy of antibacterial drugs for the treatment of inflammatory bowel disease.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Inulin , Salmonella Infections , Animals , Inulin/pharmacology , Inulin/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Gastrointestinal Microbiome/drug effects , Drug Delivery Systems , Levofloxacin/pharmacology , Micelles , Drug Carriers/chemistry , Nanoparticles/chemistry
9.
World J Gastrointest Oncol ; 16(4): 1421-1436, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660653

ABSTRACT

BACKGROUND: Metabolic reprogramming plays a key role in cancer progression and clinical outcomes; however, the patterns and primary regulators of metabolic reprogramming in colorectal cancer (CRC) are not well understood. AIM: To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in promoting progression of CRC. METHODS: We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Consensus clustering was used to cluster CRC based on dysregulated metabolic genes. A prediction model was constructed based on survival-related metabolic genes. Sphere formation, migration, invasion, proliferation, apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC. mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells. In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth. RESULTS: We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes. Among these genes, NOX4 was highly expressed in tumor tissues and correlated with worse survival. In vitro, NOX4 overexpression induced clone formation, migration, invasion, and stemness in CRC cells. Furthermore, RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway. Trametinib, a MEK1/2 inhibitor, abolished the NOX4-mediated tumor progression. In vivo, NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis, whereas trametinib treatment can reversed the metastasis. CONCLUSION: Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis, suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.

10.
iScience ; 27(4): 109460, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550980

ABSTRACT

Various energy storage systems (ESS) can be derived from the Brayton cycle, with the most representative being compressed air energy storage and pumped thermal electricity storage systems. Although some important studies on above ESS are reported, the topological structure behind those systems (i.e., derivations of the Brayton cycle) has not been studied, and the underlying thermodynamic ideas still need to be further explored. This paper first introduces the topological structure and the symmetry of ESS and their based Brayton cycles. The formation method of ESS based on paths and separation points is specified. It is found that round-trip path can form ESS directly. Then various ESS formed are compared. Finally, the synergistic effect and gain principle of thermal cycle and ESS are revealed. This work helps to reveal the intrinsic relationship between thermal cycles and ESS, understand the general laws behind ESS, and guide the combination of thermal cycles and ESS.

11.
J Colloid Interface Sci ; 664: 681-690, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492369

ABSTRACT

Hard carbon (HC) has emerged as a highly promising anode material for sodium ion batteries, drawing tremendous interest in producing this material with low-cost and easily accessible precursors. The determination of the crucial parameters of precursors influencing the formation of key structures, such as closed pores, in the HC is of paramount importance. Considering the potential role of free radicals in the structural evolution of the precursors, we, for the first time, delve into the impact of radical species on the development of closed pores by electron paramagnetic resonance spectroscopy, with petroleum asphalt as the model system. Our findings reveal that carbon centred radicals, with the g value close to that of the free electron (2.0023), exhibit a propensity to form long-range, well-ordered graphitic structures with lower sodium storage capacity. Conversely, the deliberately incorporated oxygen radicals with the g value over 2.005 require a higher energy for ordering the graphitic structures, leading to the creation of closed pores. As a result, the optimal sample showcases a four-fold increase in plateau capacity for sodium ion storage due to the pore filling process. Our research underscores the pivotal role of employing electron paramagnetic resonance spectroscopy studying the critical structural evolution of functional carbon materials.

12.
World J Gastrointest Surg ; 16(2): 396-408, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463346

ABSTRACT

BACKGROUND: The efficacy of neoadjuvant chemotherapy (NAC) in advanced gastric cancer (GC) is still a controversial issue. AIM: To find factors associated with chemosensitivity to NAC treatment and to provide the optimal therapeutic strategies for GC patients receiving NAC. METHODS: The clinical information was collected from 230 GC patients who received NAC treatment at the Central South University Xiangya School of Medicine Affiliated Haikou Hospital from January 2016 to December 2020. Least absolute shrinkage and selection operator logistic regression analysis was used to find the possible predictors. A nomogram model was employed to predict the response to NAC. RESULTS: In total 230 patients were finally included in this study, including 154 males (67.0%) and 76 females (33.0%). The mean age was (59.37 ± 10.60) years, ranging from 24 years to 80 years. According to the tumor regression grade standard, there were 95 cases in the obvious response group (grade 0 or grade 1) and 135 cases in the poor response group (grade 2 or grade 3). The obvious response rate was 41.3%. Least absolute shrinkage and selection operator analysis showed that four risk factors significantly related to the efficacy of NAC were tumor location (P < 0.001), histological differentiation (P = 0.001), clinical T stage (P = 0.008), and carbohydrate antigen 724 (P = 0.008). The C-index for the prediction nomogram was 0.806. The calibration curve revealed that the predicted value exhibited good agreement with the actual value. Decision curve analysis showed that the nomogram had a good value in clinical application. CONCLUSION: A nomogram combining tumor location, histological differentiation, clinical T stage, and carbohydrate antigen 724 showed satisfactory predictive power to the response of NAC and can be used by gastrointestinal surgeons to determine the optimal treatment strategies for advanced GC patients.

13.
BMC Genom Data ; 25(1): 30, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491489

ABSTRACT

BACKGROUND: The suamc genus Rhus (sensu stricto) includes two subgenera, Lobadium (ca. 25 spp.) and Rhus (ca. 10 spp.). Their members, R. glabra and R. typhina (Rosanae: Sapindales: Anacardiaceae), are two economic important species. Chloroplast genome information is of great significance for the study of plant phylogeny and taxonomy. RESULTS: The three complete chloroplast genomes from two Rhus glabra and one R. typhina accessions were obtained with a total of each about 159k bp in length including a large single-copy region (LSC, about 88k bp), a small single-copy regions (SSC, about 19k bp) and a pair of inverted repeats regions (IRa/IRb, about 26k bp), to form a canonical quadripartite structure. Each genome contained 88 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes and two pseudogenes. The overall GC content of the three genomes all were same (37.8%), and RSCU values showed that they all had the same codon prefers, i.e., to use codon ended with A/U (93%) except termination codon. Three variable hotspots, i.e., ycf4-cemA, ndhF-rpl32-trnL and ccsA-ndhD, and a total of 152-156 simple sequence repeats (SSR) were identified. The nonsynonymous (Ka)/synonymous (Ks) ratio was calculated, and cemA and ycf2 genes are important indicators of gene evolution. The phylogenetic analyses of the family Anacardiaceae showed that the eight genera were grouped into three clusters, and supported the monophyly of the subfamilies and all the genera. The accessions of five Rhus species formed four clusters, while, one individual of R. typhina grouped with the R. glabra accessions instead of clustering into the two other individuals of R. typhina in the subgenus Rhus, which showed a paraphyletic relationship. CONCLUSIONS: Comparing the complete chloroplast genomes of the Rhus species, it was found that most SSRs were A/T rich and located in the intergenic spacer, and the nucleotide divergence exhibited higher levels in the non-coding region than in the coding region. The Ka/Ks ratio of cemA gene was > 1 for species collected in America, while it was < 1 for other species in China, which dedicated that the Rhus species from North America and East Asia have different evolutionary pressure. The phylogenetic analysis of the complete chloroplast genome clarified the Rhus placement and relationship. The results obtained in this study are expected to provide valuable genetic resources to perform species identification, molecular breeding, and intraspecific diversity of the Rhus species.


Subject(s)
Anacardiaceae , Genome, Chloroplast , Magnoliopsida , Rhus , Humans , Phylogeny , Rhus/genetics , Anacardiaceae/genetics , Magnoliopsida/genetics , Codon/genetics
14.
Chem Asian J ; 19(9): e202301146, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38445813

ABSTRACT

Due to the almost unlimited resource and acceptable performance, Sodium-ion batteries (SIBs) have been regarded as a promising alternative for lithium-ion batteries (LIBs) for grid-scale energy storage. As the key material of SIBs, hard carbon (HC) plays a decisive role in determining the batteries' performance. Nevertheless, the micro-structure of HCs is quite complex and the random organization of turbostratically stacked graphene layers, closed pores, and defects make the structure-performance relationship insufficiently revealed. On the other hand, the impending large-scale deployment of SIBs leads to producing HCs with low-cost and abundant precursors actively pursued. In this work, the recent progress of preparing HCs from different precursors including biomass, polymers, and fossil fuels is summarized with close attention to the influences of precursors on the structural evolution of HCs. After a brief introduction of the structural features of HCs, the recent understanding of the structure-performance relationship of HCs for sodium storage is summarized. Then, the main focus is concentrated on the progress of producing HCs from distinct precursors. After that, the pros and cons of HCs derived from different precursors are comprehensively compared to conclude the selection rules of precursors. Finally, the further directions of HCs are deeply discussed to end this review.

15.
Bioorg Chem ; 145: 107216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387396

ABSTRACT

ß-Carboline alkaloids are natural and synthetic products with outstanding antitumor activity. C3 substituted and dimerized ß-carbolines exert excellent antitumor activity. In the present research, 37 ß-carboline derivatives were synthesized and characterized. Their cytotoxicity, cell cycle, apoptosis, and CDK2- and DNA-binding affinity were evaluated. ß-Carboline monomer M3 and dimer D4 showed selective activity and higher cytotoxicity in tumor cells than in normal cells. Structure-activity relationships (SAR) indicated that the amide group at C3 enhanced the antitumor activity. M3 blocked the A549 (IC50 = 1.44 ± 1.10 µM) cell cycle in the S phase and inhibited A549 cell migration, while D4 blocked the HepG2 (IC50 = 2.84 ± 0.73 µM) cell cycle in the G0/G1 phase, both of which ultimately induced apoptosis. Furthermore, associations of M3 and D4 with CDK2 and DNA were proven by network pharmacology analysis, molecular docking, and western blotting. The expression level of CDK2 was downregulated in M3-treated A549 cells and D4-treated HepG2 cells. Moreover, M3 and D4 interact with DNA and CDK2 at sub-micromolar concentrations in endothermic interactions caused by entropy-driven adsorption processes, which means that the favorable entropy change (ΔS > 0) overcomes the unfavorable enthalpy change (ΔH > 0) and drives the spontaneous reaction (ΔG < 0). Overall, these results clarified the antitumor mechanisms of M3 and D4 through disrupting the cell cycle by binding DNA and CDK2, which demonstrated the potential of M3 and D4 as novel antiproliferative drugs targeting mitosis.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Molecular Docking Simulation , Cell Cycle , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA , Carbolines/pharmacology , Carbolines/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
16.
Article in English | MEDLINE | ID: mdl-38299298

ABSTRACT

Stroke continues to be the main cause of motor disability worldwide. While it has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.

.

17.
BMC Pregnancy Childbirth ; 24(1): 36, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182970

ABSTRACT

BACKGROUND: It is unclear whether the effects of abnormal gestational weight gain (GWG) on birth outcomes are differently in women with different maternal ages. This study aimed to investigate maternal age-specific association between GWG and adverse birth weights in Chinese women older than 30. METHODS: 19,854 mother-child dyads were selected from a prospective cohort study in Southwest China between 2019 and 2022. Logistic regression model was used to assess the association between GWG, which defined by the 2009 Institute of Medicine guidelines, and adverse birth weights including large- and small-for-gestational-age (LGA and SGA), stratified by maternal age (31-34 years and ≥ 35 years). RESULTS: In both maternal age groups, excessive and insufficient GWG were associated with increased odds of LGA and SGA, respectively. After women were categorized by pre-pregnancy body mass index, the associations remained significant in women aged 31-34 years, whereas for women aged ≥ 35 years, the association between excessive GWG and the risk of LGA was only significant in normal weight and overweight/obese women, and the significant effect of insufficient GWG on the risk of SGA was only observed in underweight and overweight/obese women. Moreover, among overweight/obese women, the magnitude of the association between insufficient GWG and the risk of SGA was greater in those aged ≥ 35 years (31-34 years: OR 2.08, 95% CI 1.19-3.55; ≥35 years: OR 2.65, 95% CI 1.47-4.74), while the impact of excessive GWG on the risk of LGA was more pronounced in those aged 31-34 years (31-34 years: OR 2.18, 95% CI 1.68-2.88; ≥35 years: OR 1.71, 95% CI 1.30-2.25). CONCLUSIONS: The stronger associations between abnormal GWG and adverse birth weights were mainly observed in women aged 31-34 years, and more attention should be paid to this age group.


Subject(s)
Gestational Weight Gain , United States , Pregnancy , Female , Humans , Birth Weight , Maternal Age , Prospective Studies , Overweight , Obesity/epidemiology , China/epidemiology
18.
ACS Appl Mater Interfaces ; 16(3): 3978-3990, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193850

ABSTRACT

Simultaneously realizing high electromagnetic interference (EMI) shielding and superhydrophobic properties of materials to ensure long-term stability in harsh environments is a very challenging task. In this work, an efficient superhydrophobic EMI shielding composite with a gradient conductivity and porous structure was prepared by chemical plating, in situ polymerization, and spraying processes. Benefiting from the structural characteristics of porous multilayers and the rational distribution of electromagnetic two-component fillers in the composite, as well as the synergistic effect of various electromagnetic loss mechanisms, a perfect unification of high EMI shielding effectiveness of 62 dB and high absorption coefficient (A) of 0.77 was achieved. Meanwhile, a thin layer with further enhanced impedance matching was constructed on the surface of the composite using double-sized mixed particles of Fe3O4 and graphite particles (GP) in conjunction with the spraying process. The rough surface microstructure of the thin layer bestows the composite superhydrophobicity, and even after long-term immersion in acidic and alkali solutions or repetitive bending, the water contact angle still remains at a high level. Additionally, the sprayed materials also endow the composite with outstanding photothermal conversion properties that enhance the ability to adapt to environmental changes, significantly raising the practical application value.

19.
Int J Environ Health Res ; 34(2): 708-718, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36628496

ABSTRACT

Previous studies have linked exposure to light at night (LAN) with various health outcomes, but evidence is limited for the LAN-obesity association. Thestudy analysed data from 24,845 participants of the 33 Communities Chinese Health Study and obesity (BMI ≥28 kg/m2) was defined according to the Working Group on Obesity in China. The Global Radiance Calibrated Nighttime Lights data were used to estimate participants' LAN exposure. The mixed-effect regression models examined the LAN-BMI and LAN-obesity association. We found that higher LAN exposure was significantly associated with greater BMI and higher risk of obesity. Changes of BMI and the odds ratios (ORs) of obesity and 95% confidence intervals (CIs) for 2nd, 3rd, and 4th against the 1st quartile of LAN exposure were 0.363 (0.208, 0.519), 0.364 (0.211, 0.516) and 0.217 (0.051, 0.383); 1.228 (1.099, 1.371), 1.356 (1.196, 1.538) and 1.269 (1.124, 1.433), respectively. Age and regular exercise showed significant modification effects on the LAN-obesity association.


Subject(s)
Light , Obesity , Adult , Humans , Obesity/epidemiology , Public Health , China/epidemiology
20.
Small ; 20(12): e2308216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946696

ABSTRACT

The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...