Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10120, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698073

ABSTRACT

In this work, we realized the detection of diamino-pentazolium cation (DAPZ+) in the reaction solution experimentally and proved it to be meta-diamino-pentazole based on the transition state theory. Quantum chemical methods were used to predict its spectral properties, charge distribution, stability and aromaticity. Considering that DAPZ+ has excellent detonation properties, it was further explored by assembling it with N5-, N3- and C(NO2)3- anions, respectively. The results show a strong interaction between DAPZ+ and the three anions, which will have a positive effect on its stability. Thanks to the high enthalpy of formation and density, the calculated detonation properties of the three systems are exciting, especially [DAPZ+][N5-] (D: 10,016 m·s-1; P: 37.94 GPa), whose actual detonation velocity may very likely exceed CL-20 (D: 9773 m·s-1). There is no doubt that this work will become the precursor for the theoretical exploration of new polynitrogen ionic compounds.

2.
J Org Chem ; 89(9): 5966-5976, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38651598

ABSTRACT

Polycyclic energetic materials make up a distinctive class of conjugated structures that consist of two or more rings. In this work, 1,3-bis(3,5-dinitro-1H-pyrazol-4-yl)-4,6-dinitrobenzene (BDPD) was synthesized and investigated in detail as a polycyclic heat-resistant energetic molecule that can be deprotonated by bases to obtain its anionic (3-5) salts. All compounds were thoroughly characterized by 1H and 13C NMR, infrared spectroscopy, high-resolution mass spectrometry, and elemental analysis. The structural features of BDPD and its salts were investigated by single-crystal X-ray diffraction and analyzed by different kinds of computing software, like Multiwfn, Gaussian 09W, and so on. In addition, their thermal decomposition temperatures were evaluated by differential scanning calorimetry to be 319.8-329.0 °C, revealing that they possessed high thermal stabilities. The results of impact sensitivity and friction sensitivity analysis confirm that these energetic compounds were insensitive. The detonation properties of neutral compound BDPD and all its nonmetallic salts were calculated by the EXPLO5 v6.05.04 program. The results revealed that their detonation performances were higher than those of the widely used heat-resistant explosive 2,2',4,4',6,6'-hexanitrostilbene (HNS). Combining the above results, it is reasonable to suggest that these compounds have the potential to be heat-resistant energetic materials.

3.
Langmuir ; 39(48): 17498-17512, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37983616

ABSTRACT

Safe, efficient, and green synthetic energetic combustion catalysts are of great importance for the application of ammonium perchlorate (AP) in solid propellants. In this study, a novel, simple, efficient, and green electrochemical method for synthesizing energetic combustion catalysts was designed and implemented to successfully synthesize Co(BODN)·9H2O (BODN = [2,2'-bi{1,3,4-oxadiazole}]-5,5'-dinitramide), a novel energetic combustion catalyst. The target products were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, optical microscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. Results reveal that Co(BODN)·9H2O crystallizes in the triclinic P1̅ space group and has a density of 1.836 g cm-3. The size of the Co(BODN)·9H2O crystal increases gradually with the increase in the reaction current and the prolongation of the reaction time, respectively. However, the change in reaction current and time does not affect the crystal form. In addition, with the increase in Co(BODN)·9H2O content, the peak temperature of high-temperature decomposition (HTD) and apparent activation energy of AP/Co(BODN)·9H2O gradually decrease, and the heat release during thermal decomposition gradually increases. The HTD peak temperature and apparent activation energy of AP/Co(BODN) 9H2O (10%) decrease by 97.9 °C and 94.2 kJ·mol-1, respectively, compared with those of pure AP, and the heat release during thermal decomposition increases by 1613 J·g-1. Furthermore, compared with those of the propellant containing pure AP, the burning rate and flame temperature of the propellant containing AP/Co(BODN)·9H2O (10%) increase by 8.15 mm s-1 and 458.44 °C, respectively. Real-time Fourier transform infrared spectroscopy reveals that CoO catalyzes the thermal decomposition of AP mainly by promoting electron transfer to accelerate the oxidation of NH3 and the conversion of N2O to NO. In brief, this work provides new insights into synthesizing energetic combustion catalysts. Moreover, Co(BODN)·9H2O synthesized through the electrochemical method exhibits considerable application prospects for improving the thermal and energy performance of AP and the combustion performance of propellants.

4.
RSC Adv ; 13(38): 26563-26573, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37674483

ABSTRACT

Development of energetic catalysts with high energy density and strong catalytic activity has become the focus and frontier of research, which is expected to improve the combustion performance and ballistic properties of solid propellants. In this work, three energetic catalysts, M(H2O)4(AFCA)2·H2O (AFCA = 3-aminofurazan-4-carboxylic acid, M = Cu, Co, Fe), are designed and synthesized based on the coordination reaction of transition metal ions and the energetic ligand. The target products are characterized by single crystal X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, optical microscopy, and scanning electron microscopy. The results reveal that Cu(H2O)4(AFCA)2·H2O crystallizes in the monoclinic space group, Dc = 1.918 g cm-3. Co(H2O)4(AFCA)2·H2O, and Fe(H2O)4(AFCA)2·H2O belong to orthorhombic space groups, their density is 1.886 g cm-3 and 1.856 g cm-3, respectively. In addition, the designed catalysts show higher catalytic activity than some reported catalysts such as Co(en)(H2BTI)2]2·en (H3BTI = 4,5-bis(1H-tetrazol-5-yl)-1H-imida-zole), Co-AzT (H2AzT = 5,5'-azotetrazole-1,1'-diol), and [Pb(BTF)(H2O)2]n (BTF = 4,4'-oxybis [3,3'-(1-hydroxy-tetrazolyl)]furazan) for the thermal decomposition of ammonium perchlorate (AP). The high-temperature decomposition peak temperatures of AP/Cu(H2O)4(AFCA)2·H2O, AP/Co(H2O)4(AFCA)2·H2O, and AP/Fe(H2O)4 (AFCA)2·H2O are decreased by 120.3 °C, 151.8 °C and 89.5 °C compared to the case of pure AP, while the heat release of them are increased by 768.8 J g-1, 780.5 J g-1, 750.9 J g-1, respectively. Moreover, the burning rates of solid propellants composed of AP/Cu(AFCA)2(H2O)4·H2O, AP/Co(AFCA)2(H2O)4·H2O and AP/Fe(AFCA)2(H2O)4·H2O are increased by 2.16 mm s-1, 2.53 mm s-1, and 1.57 mm s-1 compared with the case of pure AP. This research shows considerable application prospects in improving the combustion and energy performance of solid propellants, it is also a reference for the design and preparation of other novel energetic catalysts.

5.
ACS Appl Mater Interfaces ; 15(35): 41580-41589, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37609932

ABSTRACT

A series of high-nitrogen compounds, including a unique molecule 2,2'-azobis(1,5'-bitetrazole) with a branched N10 chain and 1,5'-bitetrazolate-2N-oxides, were synthesized successfully based on C-N-linked 1,5'-bistetrazoles using azo coupling of N-amine bonds and N-oxide introduction strategies. All compounds were characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and differential scanning calorimetry, in which the structures of five compounds were further determined by single-crystal X-ray diffraction analysis (2, T-N10B, 3a, 3b, and THX). The nitrogen contents of these five compounds range from 63.62 (THX) to 83.43% (T-N10B), which are much higher than that of CL-20 (38.34%). The heat of formation for the prepared compounds was calculated by using the Gaussian 09 program, with T-N10B having the highest value of 5.13 kJ g-1, about 6 times higher than that of CL-20 (0.83 kJ g-1). The calculated detonation performances by EXPLO5 v6.05.04 show that THX has excellent detonation performance (D = 9581 m s-1, P = 35.93 GPa) and a remarkable specific impulse (Isp = 284.9 s).

6.
ACS Appl Mater Interfaces ; 15(1): 1601-1609, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36541859

ABSTRACT

Lithium-based nitrogen-rich complexes are important research objects in the field of high-energy materials. However, the weak coordination abilities of lithium ions relative to those of other metal ions with greater atomic numbers have hindered their applications in the field of nitrogen-rich complexes. Herein, we successfully prepared novel lithium-based nitrogen-rich complexes (N2H5-2AZTO-Li and NH3OH-2AZTO-Li) by exploiting the structural properties of 1-hydroxytetrazolium-5-hydrazine (HAZTO). Both N2H5-2AZTO-Li and NH3OH-2AZTO-Li were found to exhibit physicochemical parameters (including the density, stability, and energetic properties) that were intermediate between those of the simple ionic compounds (3 and 4) and the complexes (5) that formed them, enabling a favorable balance between high energy, high stability, and environmental friendliness (for N2H5-2AZTO-Li: detonation velocity (D) = 9005 m s-1, detonation pressure (P) = 35.5 GPa, decomposition temperature (Tdec) = 238.1 °C, impact sensitivity (IS) = 24 J, friction sensitivity (FS) = 210 N, and detonation product (DP) (CO) < 2%; for NH3OH-2AZTO-Li: D = 9028 m s-1, P = 35.7 GPa, Tdec = 211.2 °C, IS = 20 J, FS = 180 N, and DP (CO) < 2%). This study transcends the conventional structural forms of nitrogen-rich complexes, opening new horizons for the design of novel insensitive energetic materials.

7.
RSC Adv ; 12(51): 33304-33312, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425169

ABSTRACT

An N-trinitromethyl strategy was employed for the synthesis of polynitro-pyrazole based high-energy-density compounds with great potential as energetic materials. The new compounds were characterized by 1H and 13C NMR, IR spectroscopy, elemental analysis, differential scanning calorimetry, and single-crystal X-ray diffraction. Compound 10 exhibits high energetic properties, has a positive oxygen balance (OB) of +2.1%, and an excellent specific impulse (272.4 s), making it a potential high-energy dense oxidizer to replace AP in solid rocket propellants. The nitration of 7 with HNO3/H2SO4 yielded the green primary explosive 12, which showed higher density, higher performance, better oxygen balance and lower sensitivities to those of currently used diazodinitrophenol. Compound 13 is a nitrogen and oxygen rich secondary explosive with a high OB (+5.0%), comparable energy (D = 9030 m s-1; P = 35.6 GPa; η = 1.03) to HMX, and much lower mechanical sensitivity (IS = 12 J, FS = 240 N).

8.
Front Chem ; 10: 993036, 2022.
Article in English | MEDLINE | ID: mdl-36157040

ABSTRACT

All-nitrogen materials, as a unique branch of energetic materials, have gained huge attentions, of which cyclo-N 5 - derivatives are the representative synthetically reported materials. However, the energetic performance of cyclo-N 5 - compounds has certain limitations and cannot go beyond that of CL-20. In order to reach the higher energy, in this work, we presented two kinds of polynitrogen species, N4 and N8. Two isomers of N4 and four isomers of N8 were fully calculated by using density functional theory (DFT). Theoretical results show that all these polynitrogen materials exhibit excellent heats of formation (7.92-16.60 kJ g-1), desirable detonation performance (D: 9766-11620 m s-1; p: 36.8-61.1 GPa), as well as the remarkable specific impulses (330.1-436.2 s), which are much superior to CL-20. Among them, N 4 -2 (tetraazahedrane) (D: 10037 m s-1; p: 40.1 GPa; Isp: 409.7 s) and cube N 8 -4 (D: 11620 m s-1; p: 61.1 GPa; Isp: 436.2 s) have the highest energetic properties, which are expected to become promising high-energy-density-materials. Moreover, electrostatic surface potentials, Frontier molecular orbitals, infrared spectra, natural bond orbital charges, and weak interactions were also investigated to further understand their relationship between structure and performance.

9.
Front Chem ; 10: 996812, 2022.
Article in English | MEDLINE | ID: mdl-36092665

ABSTRACT

The exploration of novel nitrogen-rich heterocyclic building blocks is of importance in the field of energetic materials. A series of 2-(1,2,4-triazole-5-yl)-1,3,4-oxadiazole derivatives based on a new energetic skeleton have been first synthesized by a simple synthetic strategy. All three compounds are well-characterized by IR spectroscopy, NMR spectroscopy and thermal analysis. The compounds 5 and 8 are further characterized by single-crystal X-ray diffraction analysis. 8 and its salts (8a-8c) possess relative high decomposition temperature and low sensitivity, while 5 exhibits low decomposition temperature and high sensitivity. According to EXPLO5 calculation results of detonation performance, both 5 and 8 display acceptable detonation velocities (D) of 8450 m/s and 8130 m/s and detonation pressures (P) of 31.6 GPa and 29.2 GPa, respectively. Furthermore, 5 containing a rare diazonium ylide structure shows high impact sensitivity (4.5 J), making it has a potential as a primary explosive.

10.
Dalton Trans ; 51(26): 10216-10220, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35748403

ABSTRACT

High-efficiency explosives that combine high stability and excellent energy performance are one of the key directions of energetic materials research. In this study, a novel monocyclic hydroxytetrazole derivative (3) with high stability was prepared, and a series of insensitive energetic ionic salts were derived from it. Benefiting from their outstanding performance in terms of density, 3D hydrogen bonding and π-electron interactions, these salts are excellent in both detonation performance (D = 8709 to 9314 m s-1 and P = 29.9 to 35.6 GPa) and thermal stability (Td = 193.0-232.2 °C). The hydrazine salt (2) exhibits high detonation properties (D = 9314 m s-1 and P = 35.6 GPa), due to its high density (ρ = 1.71 g cm-3) and high heat of formation (ΔfH = 563.2 kJ mol-1 = 3.19 kJ g-1). In addition, the high thermal stability (Td = 232.0 °C) and low mechanical sensitivity (IS = 30 J and FS = 360 N) of 2 are also unmatched by HMX and TKX-50. These improved properties demonstrate the great promise of 2 as an insensitive high-energy explosive.

11.
Dalton Trans ; 51(15): 5801-5809, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35302566

ABSTRACT

A series of cyclo-N5--based lead-containing energetic coordination polymers [Pb(OH)]4(N5)4 (1), [Pb3(N5)3(H2O)9(NO3)]4(N5)8(H2O)5 (2), [Pb(OH)]4(N5)3(NO3)(H2O)3 (3), and [Pb(OH)]4(N5)3(ClO4)(H2O) (4) were synthesized by self-assembly and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared and Raman spectroscopy, high resolution mass spectrometry, elemental analysis, scanning electron microscopy, and differential scanning calorimetry. In addition, their thermal decomposition kinetics have been studied theoretically and experimentally. The results revealed that the synthesized CPs possess regular structures, very high densities (2.852-4.537 g cm-3), good oxygen balances (CO2) (-2.72-+2.61%), good thermal stabilities (80-110 °C), and acceptable sensitivities (9.5-20 J; 120-240 N). This work will provide new inspiration for the development of cyclo-N5--based coordination polymers and energetic materials.

12.
Dalton Trans ; 50(37): 12906-12912, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581376

ABSTRACT

Energetic metal organic frameworks (EMOFs) is a hot topic in the field of energetic materials research. This paper reports two kinds of EMOFs based on methylene-linked polynitropyrazole and nitroamine 1,2,4-oxadiazole. Their structures were fully characterized by crystallography and their detonation performance and stability performance were explored. The results showed that the crystals of compounds 4 and 5 exhibited a 3D stacking phenomenon due to the action of a large number of hydrogen bonds and coordination bonds inside the crystal. In terms of stability, both 4 and 5 showed good thermal stability (TSADT (4) = 204.4 °C and TSADT (5) = 216.2 °C), but due to the difference in the number of energetic groups (-NO2), the sensitivity of 4 (IS = 6.0 J and FS = 100 N) to mechanical stimuli is significantly lower than that of compound 5 (IS = 1.2 J and FS = 40 N). In terms of energy performance, it is this great advantage in the number of energetic groups that makes compound 5's (Dv = 8.059 km s-1 and P = 30.9 GPa) detonation performance superior to that of 4 (Dv = 7.704 km s-1 and P = 26.9 GPa). This research broadens the horizon for the development of EMOFs based on polynitropyrazole derivatives.

13.
ACS Appl Mater Interfaces ; 13(18): 21516-21526, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33926184

ABSTRACT

Energetic metal-organic frameworks (EMOFs) with a high oxygen content are currently a hot spot in the field of energetic materials research. In this article, two series of EMOFs with different ligands were obtained by reacting 1-(trinitromethyl)-1H-1,2,4-triazole-3-carboxylic acid (tntrza) with metal iodide and metal nitrate, respectively. Furthermore, their structure, thermal stability, thermal decomposition kinetics, and energy performance are fully characterized. The research results revealed that the synthesized EMOFs possess a wide range of density (ρ = 1.88∼2.595 g cm-3), oxygen balance (OB(CO2) = -21.1∼ -4.3%), and acceptable energy performance (D = 7.73∼8.74 km s-1 and P = 28.1∼41.1 GPa). The difference in OB(CO2) caused by the ligand structure and metal properties has a great impact on the distribution of gas-phase products after the decomposition of these EMOFs. Noteworthy, [Ag(tntrza)]n is particularly prominent among these EMOFs, not only because of its excellent detonation performance (D = 8.74 km s-1 and P = 41.1 GPa) endowed by its extremely high density (ρ = 2.595 g cm-3) and oxygen balance (OB(CO2) = -4.3%) but also because of its effective catalytic effect on the decomposition of ammonium perchlorate (AP). This article broadens the horizon for the study of oxygen-enriched EMOFs with catalytic effects and helps understand the mechanism of thermal decomposition of EMOFs with nitroform and dinitro groups.

14.
Chem Asian J ; 14(16): 2877-2882, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31286665

ABSTRACT

Three energetic salts of cyclo-N5 - were synthesized via a metathesis reaction of barium pentazolate and sulfates which was driven by the precipitation of BaSO4 . All the energetic cyclo-N5 - salts were characterized by single-crystal X-ray diffraction, infrared (IR), 1 H and 13 C multinuclear NMR spectroscopies, thermal analysis (TGA and DSC), and elemental analysis. The salts exhibit relatively good detonation performance with low sensitivities and good thermal stabilities. This new method opens the door to exploring more pentazolate anion-containing high-performance energetic materials.

15.
Chem Soc Rev ; 47(20): 7522-7538, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30234201

ABSTRACT

The pentazolate anion, or cyclo-N5-, which is a five-membered ring composed solely of nitrogen atoms, has a unique structure among polynitrogen compounds. Cyclo-N5- is receiving ever-increasing levels of attention because of its potential ability to store large amounts of energy compared to the azide ion, its environmentally friendly decomposition products, and its carbon- and hydrogen-free composition, which are promising characteristics for advancing the field of high-energy-density materials (HEDMs), that include explosives, oxidisers, and propellants in closed environments. In this review, we provide a detailed introduction to cyclo-N5- and cover the following topics: (1) substituted pentazoles as precursors of cyclo-N5-, with a focus on the syntheses and stabilities of substituted pentazole derivatives; (2) routes to cyclo-N5- through cleavage of C-N bonds in substituted pentazoles, during which competitive reactions between pentazole decomposition and C-N bond cleavage need to be considered to ensure a successful outcome; (3) complexes of cyclo-N5-, summarising recent progress toward producing cyclo-N5--based complexes through the assembly of isolated cyclo-N5- with both metallic and nonmetallic components; and (4) interactions between cyclo-N5- and metal cations and non-metal species, as well as factors that influence the stability of these complexes; in particular, the thermal stabilities of prepared cyclo-N5- salts are discussed. This review summarises recent studies and is intended to improve the understanding of polynitrogen chemistry while supporting further research into its potential application as an efficient, safe, and environmentally friendly HEDM.

16.
Nature ; 559(7713): E5, 2018 07.
Article in English | MEDLINE | ID: mdl-29795341

ABSTRACT

In this Letter, under Methods section '[Na(H2O)(N5)]⋅2H2O (2)', the description "the intermediate product arylpentazole (5.000 g, 26.18 mmol)" should have read "the intermediate product sodium salt of arylpentazole (5.000 g, 21.64 mmol)". In the legend of Fig. 3, we add that "All temperature points in the stability study were onset temperatures." to avoid misunderstanding. These corrections have been made online.

17.
Chem Asian J ; 13(13): 1669-1673, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29701898

ABSTRACT

Pentazolate anion (cyclo-N5- ), and/or N3- , NO3- were used as the ligands to obtain a series of nitrogen-rich energetic three-dimensional (3D) frameworks [Cu(N5 )(N3 )]n , [Ag(N5 )]n , [Ba(N5 )(NO3 )(H2 O)3 ]n , and [NaBa3 (N5 )6 (NO3 )(H2 O)3 ]n by self-assembly. These frameworks were characterized by single-crystal X-ray diffraction, SEM, IR and Raman spectroscopy, elemental analysis, and thermal analysis. All the frameworks exhibited regular supramolecular structures and excellent stabilities at room temperature which can be attributed to the strong coordination bonds between cyclo-N5- anions and metal ions. The successful stabilization of the cyclo-N5- in more 3D multi-ligand metal-N5- frameworks after Na-N5- frameworks has been demonstrated. This breakthrough offers new opportunities for the future of metal-pentazolate frameworks and polynitrogen chemistry.

18.
Chem Asian J ; 13(8): 924-928, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29469950

ABSTRACT

According to previous reports, metal cations or water molecules are necessary for the stabilization of pentazolate anion (cyclo-N5- ) at ambient temperature and pressure. Seeking a new method to stabilize N5- is a big challenge. In this work, three anhydrous, metal-free energetic salts based on cyclo-N5- 3,9-diamino-6,7-dihydro-5 H-bis([1,2,4]triazolo)[4,3-e:3',4'-g][1,2,4,5] tetrazepine-2,10-diium, N-carbamoylguanidinium, and oxalohydrazinium (oxahy+ ) pentazolate were synthesized and isolated. All salts were characterized by elemental analysis, IR spectroscopy, 1 H, 13 C, and (in some cases) 15 N NMR spectroscopy, thermal analysis (TGA and DSC), and single-crystal XRD analysis. Computational studies associated with heats of formation and detonation performance were performed by using Gaussian 09 and Explo5 programs, respectively. The sensitivity of the salts towards impact and friction was determined, and overall the real N5 explosives showed promising energetic properties.

19.
Dalton Trans ; 47(5): 1398-1401, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29309076

ABSTRACT

From a 1D sodium-N5- framework, a new zeolite-like metal-organic framework (MOF) with a fascinating 3D structure was successfully constructed. It exhibited an enhanced thermal stability with a decomposition temperature (onset) of 129 °C and an enhanced coordination ability (five-coordination) of cyclo-N5- in weak alkaline conditions. The 3D MOF with a bulky size offers new opportunities not only for the formation of porous materials but also to control the balance between the performance and stability of polynitrogen materials.

20.
Dalton Trans ; 46(41): 14088-14093, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-28972618

ABSTRACT

A carbon-free inorganic-metal complex [Zn(H2O)4(N5)2]·4H2O was synthesized by the ion metathesis of [Na(H2O)(N5)]·2H2O solution with Zn(NO3)2·6H2O. The complex was well characterized by IR and Raman spectroscopy, elemental analysis (EA), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). The structure of the complex was confirmed by single-crystal X-ray crystallography and a Zn(ii) ion is coordinated in a quadrilateral bipyramid environment in which the axial position is formed by two nitrogen atoms (N1) from two pentazolate rings (cyclo-N5-) and the equatorial plane is formed by four oxygen atoms (O1) from four coordinated water molecules. The thermal analysis of [Zn(H2O)4(N5)2]·4H2O reveals that although water plays an important role in stabilizing cyclo-N5-, dehydration does not cause immediate decomposition of the anion. However, cyclo-N5- decomposed into N3- and N2 gas at 107.9 °C (onset). Based on its chemical compatibility and stability, the complex exhibits promising potential as a modern environmentally-friendly energetic material.

SELECTION OF CITATIONS
SEARCH DETAIL
...