Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Genet ; 55(11): 1964-1975, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783780

ABSTRACT

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.


Subject(s)
Citrus sinensis , Citrus , Citrus/genetics , Citrus/metabolism , Citrus sinensis/genetics , Citrus sinensis/metabolism , Citric Acid/metabolism , Fruit/genetics , China
2.
Phytother Res ; 37(10): 4607-4620, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37380363

ABSTRACT

Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-ß-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/ß, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.

3.
Plant Reprod ; 36(4): 287-300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37247027

ABSTRACT

KEY MESSAGE: Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.

4.
Plant Biotechnol J ; 21(8): 1577-1589, 2023 08.
Article in English | MEDLINE | ID: mdl-37115171

ABSTRACT

Pummelo (Citrus maxima or Citrus grandis) is a basic species and an important type for breeding in Citrus. Pummelo is used not only for fresh consumption but also for medicinal purposes. However, the molecular basis of medicinal traits is unclear. Here, compared with wild citrus species/Citrus-related genera, the content of 43 bioactive metabolites and their derivatives increased in the pummelo. Furthermore, we assembled the genome sequence of a variety for medicinal purposes with a long history, Citrus maxima 'Huazhouyou-tomentosa' (HZY-T), at the chromosome level with a genome size of 349.07 Mb. Comparative genomics showed that the expanded gene family in the pummelo genome was enriched in flavonoids-, terpenoid-, and phenylpropanoid biosynthesis. Using the metabolome and transcriptome of six developmental stages of HZY-T and Citrus maxima 'Huazhouyou-smooth' (HZY-S) fruit peel, we generated the regulatory networks of bioactive metabolites and their derivatives. We identified a novel MYB transcription factor, CmtMYB108, as an important regulator of flavone pathways. Both mutations and expression of CmtMYB108, which targets the genes PAL (phenylalanine ammonia-lyase) and FNS (flavone synthase), displayed differential expression between Citrus-related genera, wild citrus species and pummelo species. This study provides insights into the evolution-associated changes in bioactive metabolism during the origin process of pummelo.


Subject(s)
Citrus , Flavones , Multiomics , Plant Breeding , Citrus/genetics , Flavones/metabolism , Flavonoids/genetics , Flavonoids/metabolism
5.
Cells ; 11(24)2022 12 07.
Article in English | MEDLINE | ID: mdl-36552718

ABSTRACT

(1) Background: the miR-301a is well known involving the proliferation and migration of tumor cells. However, the role of miR-301a in the migration and phagocytosis of macrophages is still unclear. (2) Methods: sciatic nerve injury, liver injury models, as well as primary macrophage cultures were prepared from the miR-301a knockout (KO) and wild type (WT) mice to assess the macrophage's migration and phagocytosis capabilities. Targetscan database analysis, Western blotting, siRNA transfection, and CXCR4 inhibition or activation were performed to reveal miR301a's potential mechanism. (3) Results: the macrophage's migration and phagocytosis were significantly attenuated by the miR-301a KO both in vivo and in vitro. MiR-301a can target Yin-Yang 1 (YY1), and miR-301a KO resulted in YY1 up-regulation and CXCR4 (YY1's down-stream molecule) down-regulation. siYY1 increased the expression of CXCR4 and enhanced migration and phagocytosis in KO macrophages. Meanwhile, a CXCR4 inhibitor or agonist could attenuate or accelerate, respectively, the macrophage migration and phagocytosis. (4) Conclusions: current findings indicated that miR-301a plays important roles in a macrophage's capabilities of migration and phagocytosis through the YY1/CXCR4 pathway. Hence, miR-301a might be a promising therapeutic candidate for inflammatory diseases by adjusting macrophage bio-functions.


Subject(s)
Macrophages , MicroRNAs , Animals , Mice , Macrophages/metabolism , Macrophages/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis/genetics , RNA, Small Interfering , Signal Transduction , Cell Movement/genetics , Cell Movement/physiology
6.
Nat Commun ; 13(1): 6860, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36400773

ABSTRACT

Hydrogen drastically embrittles high-strength aluminum alloys, which impedes efforts to develop ultrastrong components in the aerospace and transportation industries. Understanding and utilizing the interaction of hydrogen with core strengthening elements in aluminum alloys, particularly nanoprecipitates, are critical to break this bottleneck. Herein, we show that hydrogen embrittlement of aluminum alloys can be largely suppressed by switching nanoprecipitates from the η phase to the T phase without changing the overall chemical composition. The T phase strongly traps hydrogen and resists hydrogen-assisted crack growth, with a more than 60% reduction in the areal fractions of cracks. The T phase-induced reduction in the concentration of hydrogen at defects and interfaces, which facilitates crack growth, primarily contributes to the suppressed hydrogen embrittlement. Transforming precipitates into strong hydrogen traps is proven to be a potential mitigation strategy for hydrogen embrittlement in aluminum alloys.

7.
Hortic Res ; 9: uhac175, 2022.
Article in English | MEDLINE | ID: mdl-36238347

ABSTRACT

Citric acid and anthocyanin contents were co-selected during Citrus domestication. Pummelo is a founding species in the Citrus genus, but the domestication of pummelo has not been well studied. Here, we compared the citric acid and anthocyanin contents of a low citric acid pummelo (Citrus maxima LCA) and its high citric acid variety (HCA) from the same cultivation area in China. Our study revealed that, unlike the LCA type, the HCA variety accumulated anthocyanin in the pericarp early in fruit development. To investigate the genetic basis of acid and anthocyanin enrichment in HCA pulp and pericarp, respectively, we generated a chromosome-scale HCA genome using long-read sequence reads and Hi-C sequencing data. Transcriptome analysis and transient overexpression assays showed that the accumulation of citric acid and anthocyanin was associated with high expression of CgANTHOCYANIN1 (CgAN1), and two different MYBs transcription factors (CgPH4 and CgRuby1), respectively. Moreover, the CgAN1 promoter was more methylated in the LCA pulp than in the HCA pulp. Treatment with a DNA methylation inhibitor, 5-azacytidine, alleviated the CgAN1 promoter hypermethylation in the LCA pulp, leading to increased CgAN1 expression and citric acid content. This study provides a new high-quality pummelo genome and insight into the molecular mechanism behind the change in tissue-specific citric acid and anthocyanin accumulation during pummelo domestication and provides a conceptual basis for precise genetic manipulation in fruit flavor breeding.

8.
Hortic Res ; 9: uhac150, 2022.
Article in English | MEDLINE | ID: mdl-36072837

ABSTRACT

Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.

9.
J Exp Bot ; 73(11): 3610-3624, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35263759

ABSTRACT

Deciphering the genetic basis of organoleptic traits is critical for improving the quality of fruits, which greatly shapes their appeal to consumers. Here, we characterize the citrus R3-MYB transcription factor TRIPTYCHON-LIKE (CitTRL), which is closely associated with the levels of citric acid, proanthocyanidins (PAs), and anthocyanins. Overexpression of CitTRL lowered acidity levels and PA contents in citrus calli as well as anthocyanin and PA contents in Arabidopsis leaves and seeds. CitTRL interacts with the two basic helix-loop-helix (bHLH) proteins CitbHLH1 and ANTHOCYANIN 1 (CitAN1) to regulate fruit quality. We show that CitTRL competes with the R2R3-MYB CitRuby1 for binding to CitbHLH1 or CitAN1, thereby repressing their activation of anthocyanin structural genes. CitTRL also competes with a second R2R3-MYB, CitPH4, for binding to CitAN1, thus altering the expression of the vacuolar proton-pump gene PH5 and Leucoanthocyanidin reductase, responsible for vacuolar acidification and proanthocyanidins biosynthesis, respectively. Moreover, CitPH4 activates CitTRL transcription, thus forming an activator-repressor loop to prevent the overaccumulation of citric acid and PAs. Overall, this study demonstrates that CitTRL acts as a repressor of the accumulation of citric acid, PAs, and anthocyanins by a cross-regulation mechanism. Our results provide an opportunity to simultaneously manipulate these key traits as a means to produce citrus fruits that are both visually and organoleptically appealing.


Subject(s)
Arabidopsis , Citrus , Proanthocyanidins , Anthocyanins/metabolism , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Citric Acid/metabolism , Citrus/genetics , Citrus/metabolism , Color , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Proanthocyanidins/metabolism , Taste , Transcription Factors/genetics , Transcription Factors/metabolism
10.
DNA Res ; 28(5)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34424285

ABSTRACT

Citrus nucellar poly-embryony (NPE) is a mode of sporophytic apomixis that asexual embryos formed in the seed through adventitious embryogenesis from the somatic nucellar cells. NPE allows clonal propagation of rootstocks, but it impedes citrus cross breeding. To understand the cellular processes involved in NPE initiation, we profiled the transcriptomes and DNA methylomes in laser microdissection captured citrus apomictic cells. In apomictic cells, ribosome biogenesis and protein degradation were activated, whereas auxin polar transport was repressed. Reactive oxygen species (ROS) accumulated in the poly-embryonic ovules, and response to oxidative stress was provoked. The global DNA methylation level, especially that of CHH context, was decreased, whereas the methylation level of the NPE-controlling key gene CitRWP was increased. A C2H2 domain-containing transcription factor gene and CitRWP co-expressed specifically in apomictic cells may coordinate to initiate NPE. The activated embryogenic development and callose deposition processes indicated embryogenic fate of nucellar embryo initial (NEI) cells. In our working model for citrus NPE initiation, DNA hyper-methylation may activate transcription of CitRWP, which increases C2H2 expression and ROS accumulation, triggers epigenetic regulation and regulates cell fate transition and NEI cell identity in the apomictic cells.


Subject(s)
Citrus , Citrus/genetics , Embryonic Development , Epigenesis, Genetic , Epigenome , Plant Breeding , Transcriptome
11.
Hortic Res ; 8(1): 69, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33790260

ABSTRACT

Grafting is an ancient technique used for plant propagation and improvement in horticultural crops for at least 1,500 years. Citrus plants, with a seed-to-seed cycle of 5-15 years, are among the fruit crops that were probably domesticated by grafting. Poncirus trifoliata, a widely used citrus rootstock, can promote early flowering, strengthen stress tolerance, and improve fruit quality via scion-rootstock interactions. Here, we report its genome assembly using PacBio sequencing. We obtained a final genome of 303 Mb with a contig N50 size of 1.17 Mb and annotated 25,680 protein-coding genes. DNA methylome and transcriptome analyses indicated that the strong adaptability of P. trifoliata is likely attributable to its special epigenetic modification and expression pattern of resistance-related genes. Heterografting by using sweet orange as scion and P. trifoliata as rootstock and autografting using sweet orange as both scion and rootstock were performed to investigate the genetic effects of the rootstock. Single-base methylome analysis indicated that P. trifoliata as a rootstock caused DNA demethylation and a reduction in 24-nt small RNAs (sRNAs) in scions compared to the level observed with autografting, implying the involvement of sRNA-mediated graft-transmissible epigenetic modifications in citrus grafting. Taken together, the assembled genome for the citrus rootstock and the analysis of graft-induced epigenetic modifications provide global insights into the genetic effects of rootstock-scion interactions and grafting biology.

12.
PLoS Genet ; 17(1): e1009316, 2021 01.
Article in English | MEDLINE | ID: mdl-33493197

ABSTRACT

Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases in citrus industry worldwide. Most citrus cultivars such as sweet orange are susceptible to canker disease. Here, we utilized wild citrus to identify canker-resistant germplasms, and found that Atalantia buxifolia, a primitive (distant-wild) citrus, exhibited remarkable resistance to canker disease. Although the susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1) could also be induced in Atalantia after canker infection, the induction extent was far lower than that in sweet orange. In addition, three of amino acids encoded by transcription factor TFIIAγ in Atalantia (AbTFIIAγ) exhibited difference from those in sweet orange (CsTFIIAγ) which could stabilize the interaction between effector PthA4 and effector binding element (EBE) of LOB1 promoter. The mutation of AbTFIIAγ did not change its interaction with transcription factor binding motifs (TFBs). However, the AbTFIIAγ could hardly support the LOB1 expression induced by the PthA4. In addition, the activity of AbLOB1 promoter was significantly lower than that of CsLOB1 under the induction by PthA4. Our results demonstrate that natural variations of AbTFIIAγ and effector binding element (EBE) in the AbLOB1 promoter are crucial for the canker disease resistance of Atalantia. The natural mutations of AbTFIIAγ gene and AbLOB1 promoter in Atalantia provide candidate targets for improving the resistance to citrus canker disease.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Rutaceae/genetics , Transcription Factor TFIIA/genetics , Citrus/genetics , Citrus/growth & development , Citrus/microbiology , Gene Expression Regulation, Plant , Mutation/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Rutaceae/growth & development , Rutaceae/microbiology , Xanthomonas/genetics , Xanthomonas/pathogenicity
13.
Curr Opin Plant Biol ; 59: 101984, 2021 02.
Article in English | MEDLINE | ID: mdl-33418404

ABSTRACT

Apomixis, is an asexual mode of seed formation resulting in genetically identical or clonal seed with a maternal genotype. Apomixis has not been reported in seed crops where its flexible application in plant breeding could accelerate delivery of new varieties. By contrast, a sporophytic form of apomixis termed nucellar or adventitious embryony is common in the Rutaceae containing Citrus crop species. Here, multiple embryos develop from the maternal, somatic, nucellar cells of the ovule. They are incorporated into the enlarging embryo sac containing the sexually derived zygotic embryo and endosperm, which are products of double fertilization. Recent research has provided insights to the molecular basis for nucellar embryony. Here, we review the current understanding of the initiation, genetic basis and evolution of nucellar embryony in Citrus, and discuss prospects for future study and breeding applications of Citrus sporophytic apomixis.


Subject(s)
Apomixis , Citrus , Apomixis/genetics , Citrus/genetics , Embryonic Development , Ovule , Plant Breeding , Seeds/genetics
14.
Antioxidants (Basel) ; 9(2)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079281

ABSTRACT

CYTOCHROME P450s genes are a large gene family in the plant kingdom. Our earlier transcriptome data revealed that a CYTOCHROME P450 gene of Citrus sinensis (CsCYT75B1) was associated with flavonoid metabolism and was highly induced after drought stress. Here, we characterized the function of CsCYT75B1 in drought tolerance by overexpressing it in Arabidopsis thaliana. Our results demonstrated that the overexpression of the CsCYT75B1 gene significantly enhanced the total flavonoid contents with increased antioxidant activity in transgenic Arabidopsis. The gene expression results showed that several genes that are responsible for the biosynthesis of antioxidant flavonoids were induced by 2-12 fold in transgenic Arabidopsis lines. After 14 days of drought stress, all transgenic lines displayed an enhanced tolerance to drought stress along with accumulating antioxidant flavonoids with lower superoxide radicals and reactive oxygen species (ROS) than wild type plants. In addition, drought-stressed transgenic lines possessed higher antioxidant enzymatic activities than wild type transgenic lines. Moreover, the stressed transgenic lines had significantly lower levels of electrolytic leakage than wild type transgenic lines. These results demonstrate that the CsCYT75B1 gene of sweet orange functions in the metabolism of antioxidant flavonoid and contributes to drought tolerance by elevating ROS scavenging activities.

15.
Plant J ; 98(5): 912-927, 2019 06.
Article in English | MEDLINE | ID: mdl-30739398

ABSTRACT

Long intergenic non-coding RNAs (lincRNAs) play important roles in various biological processes in plants. However, little information is known about the evolutionary characteristics of lincRNAs among closely related plant species. Here, we present a large-scale comparative study of lincRNA transcription patterns in nine citrus species. By strand-specific RNA-sequencing, we identified 18 075 lincRNAs (14 575 lincRNA loci) from 34 tissue samples. The results indicated that the evolution of lincRNA transcription is more rapid than that of mRNAs. In total, 82.8-97.6% of sweet orange (Citrus sinensis) lincRNA genes were shown to have homologous sequences in other citrus genomes. However, only 15.5-28.8% of these genes had transcribed homologous lincRNAs in these citrus species, presenting a strong contrast to the high conservation of mRNA transcription (81.6-84.7%). Moreover, primitive and modern citrus lincRNAs were preferentially expressed in reproductive and vegetative organs, respectively. Evolutionarily conserved lincRNAs showed higher expression levels and lower tissue specificity than species-specific lincRNAs. Notably, we observed a similar tissue expression pattern of homologous lincRNAs in sweet orange and pummelo (Citrus grandis), suggesting that these lincRNAs may be functionally conserved and selectively maintained. We also identified and validated a lincRNA with the highest expression in fruit that acts as an endogenous target mimic (eTM) of csi-miR166c, and two lincRNAs that act as a precursor and target of csi-miR166c, respectively. These lincRNAs together with csi-miR166c could form an eTM166-miR166c-targeted lincRNA regulatory network that possibly affects citrus fruit development.


Subject(s)
Citrus/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , RNA, Long Noncoding/genetics , Sequence Analysis, RNA/methods , Citrus/classification , Evolution, Molecular , Gene Regulatory Networks , Genome, Plant/genetics , MicroRNAs/genetics , Phylogeny , Species Specificity
16.
BMC Plant Biol ; 19(1): 603, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888492

ABSTRACT

BACKGROUND: Citrus fruits are consumed freshly or as juice to directly provide various dietary flavonoids to humans. Diverse metabolites are present among Citrus genera, and many flavonoids biosynthetic genes were induced after abiotic stresses. To better understand the underlying mechanism, we designed experiments to overexpress a UDP-GLUCOSYL TRANSFERASE gene from sweet orange (Citrus sinensis) to evaluate its possible function in metabolism and response to stress. RESULTS: Our results demonstrated that overexpression of Cs-UGT78D3 resulted in high accumulation of proanthocyanidins in the seed coat and a dark brown color to transgenic Arabidopsis seeds. In addition, the total contents of flavonoid and anthocyanin were significantly enhanced in the leaves of overexpressed lines. Gene expression analyses indicated that many flavonoid (flavonol) and anthocyanin genes were up-regulated by 4-15 folds in transgenic Arabidopsis. Moreover, after 14 days of high light stress, the transgenic Arabidopsis lines showed strong antioxidant activity and higher total contents of anthocyanins and flavonoids in leaves compared with the wild type. CONCLUSION: Our study concluded that the citrus Cs-UGT78D3 gene contributes to proanthocyanidins accumulation in seed coats and confers tolerance to high light stress by accumulating the total anthocyanin and flavonoid contents with better antioxidant potential (due to photoprotective activity of anthocyanin) in the transgenic Arabidopsis.


Subject(s)
Anthocyanins/metabolism , Citrus sinensis/genetics , Glucosyltransferases/genetics , Light , Plant Proteins/genetics , Proanthocyanidins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Citrus sinensis/metabolism , Ectopic Gene Expression , Glucosyltransferases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
17.
Virus Res ; 262: 48-53, 2019 03.
Article in English | MEDLINE | ID: mdl-29792903

ABSTRACT

Endogenous pararetroviruses (EPRVs) are characterized in several plant genomes and their biological effects have been reported. In this study, hundreds of EPRV segments were identified in six Citrinae genomes. A total of 1034 EPRV segments were identified in the genomes of sweet orange, 2036 in pummelo, 598 in clementine mandarin, 752 in Ichang papeda, 2060 in citron and 245 in atalantia. Genomic analysis indicated that EPRV segments tend to cluster as hot spots in the genomes, particularly on chromosome 2 and 5. Large numbers of simple repeats and transposable elements were identified in the 2-kb flanking regions of the EPRV segments. Comparative genomic analysis and PCR experiments showed that there are highly conserved EPRV segments and species-specific EPRV segments between the Citrinae genomes. Phylogenetic analysis suggested that the integration events of EPRVs could initiate in a common progenitor of Citrinae species and repeatedly occur during the Citrinae divergence.


Subject(s)
Citrus/genetics , Citrus/virology , Endogenous Retroviruses/genetics , Genome, Plant , Chromosomes, Plant/genetics , Chromosomes, Plant/virology , Evolution, Molecular , Phylogeny , Virus Integration
18.
Nat Plants ; 4(11): 930-941, 2018 11.
Article in English | MEDLINE | ID: mdl-30374094

ABSTRACT

The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2, which is adjacent to Ruby1, a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2-Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2-Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis, grape or petunia.


Subject(s)
Citrus/genetics , Domestication , Genes, Plant/genetics , Multigene Family/genetics , Alleles , Anthocyanins/metabolism , Gene Expression Regulation, Plant , Genes, Plant/physiology , Multigene Family/physiology , Phylogeny , Plant Leaves/metabolism , Plants, Genetically Modified
19.
Plant J ; 92(2): 263-275, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28749585

ABSTRACT

In plant, a few 22-nt miRNAs direct cleavages of their targets and trigger the biogenesis of phased small interfering RNAs (phasiRNAs) in plant. In this study, we characterized a miRNA triggering phasiRNAs generation, miR3954, and explored its downstream target genes and potential function. Our results demonstrated that miR3954 showed specific expression in the flowers of citrus species, and it targeted a NAC transcription factor (Cs7 g22460) and two non-coding RNA transcripts (lncRNAs, Cs1 g09600 and Cs1 g09635). The production of phasiRNAs was detected from transcripts targeted by miR3954, and was further verified in both sequencing data and transient expression experiments. PhasiRNAs derived from the two lncRNAs targeted not only miR3954-targeted NAC gene but also additional NAC homologous genes. No homologous genes of these two lncRNAs were found in plants other than citrus species, implying that this miR3954-lncRNAs-phasiRNAs-NAC pathway is likely citrus-specific. Transgenic analysis indicated that the miR3954-overexpressing lines showed decreased transcripts of lncRNA, elevated abundance of phasiRNAs and reduced expression of NAC genes. Interestingly, the overexpression of miR3954 leads to early flowering in citrus plants. In summary, our results illustrated a model of the regulatory network of miR3954-lncRNA-phasiRNAs-NAC, which may be functionally involved in flowering in citrus.


Subject(s)
Citrus sinensis/physiology , Flowers/growth & development , MicroRNAs/physiology , RNA, Small Interfering/physiology , Citrus sinensis/genetics , Flowers/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Plants, Genetically Modified , Time Factors
20.
Nat Genet ; 49(5): 765-772, 2017 May.
Article in English | MEDLINE | ID: mdl-28394353

ABSTRACT

The emergence of apomixis-the transition from sexual to asexual reproduction-is a prominent feature of modern citrus. Here we de novo sequenced and comprehensively studied the genomes of four representative citrus species. Additionally, we sequenced 100 accessions of primitive, wild and cultivated citrus. Comparative population analysis suggested that genomic regions harboring energy- and reproduction-associated genes are probably under selection in cultivated citrus. We also narrowed the genetic locus responsible for citrus polyembryony, a form of apomixis, to an 80-kb region containing 11 candidate genes. One of these, CitRWP, is expressed at higher levels in ovules of polyembryonic cultivars. We found a miniature inverted-repeat transposable element insertion in the promoter region of CitRWP that cosegregated with polyembryony. This study provides new insights into citrus apomixis and constitutes a promising resource for the mining of agriculturally important genes.


Subject(s)
Citrus/genetics , Genome, Plant/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Apomixis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Citrus/classification , Cluster Analysis , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Gene Ontology , Genetic Variation , Phylogeny , Polymorphism, Single Nucleotide , Reproduction, Asexual/genetics , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...