Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(25): 6063-6078, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38888153

ABSTRACT

Injectable hydrogels have attracted significant interest in the biomedical field due to their minimal invasiveness and accommodation of intricate scenes. Herein, we developed an injectable polyurethane-based thermogel platform by modulating the hydrophilic-hydrophobic balance of the segmented components with pendant PEG. The thermogelling behavior is achieved by a combination of the bridging from the hydrophilic PEG and the percolated network from the hydrophobic micelle core. Firstly, the thermogelation mechanism of this system was demonstrated by both DPD simulation and experimental investigation. The gelling temperature could be modulated by varying the solid content, the component of soft segments, and the length of the pendant PEG. We further applied 3D printing technology to prepare personalized hydrogel structures. This integration highlights the adaptability of our thermogel for fabricating complex and patient-specific constructs, presenting a significant advance in the field of regenerative medicine and tissue engineering. Subsequently, in vitro cell experiments demonstrated that the thermogel had good cell compatibility and could promote the proliferation and migration of L929 cells. Impressively, A549 cells could be expediently in situ parceled in the thermogel for three-dimensional cultivation and gain lifeful 3D cell spheres after 7 days. Further, in vivo experiments demonstrated that the thermogel could promote wound healing with the regeneration of capillaries and hair follicles. Ultimately, our study demonstrates the potential of hydrogels to prepare personalized hydrogel structures via 3D printing technology, offering innovative solutions for complex biomedical applications. This work not only provides a fresh perspective for the design of injectable thermogels but also offers a promising avenue to develop thermoresponsive waterborne polyurethane for various medical applications.


Subject(s)
Hydrogels , Micelles , Polyurethanes , Polyurethanes/chemistry , Humans , Animals , Hydrogels/chemistry , Mice , Wound Healing/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Cell Proliferation/drug effects , Temperature , Cell Culture Techniques, Three Dimensional/methods , Injections , Cell Movement/drug effects , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...