Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(22): 14605-14616, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771979

ABSTRACT

Direct detection of circularly polarized light (CPL) holds great promise for the development of various optical technologies. Chiral 2D organic-inorganic halide perovskites make it possible to fabricate CPL-sensitive photodetectors. However, selectively detecting left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) light remains a significant challenge. Herein, we demonstrate a greatly enhanced distinguishability of photodiode-type CPL photodetectors based on chiral 2D perovskites with mixed chiral aryl (R)-(+),(S)-(-)-α-methylbenzylammonium (R,S-MBA) and achiral alkyl n-butylammonium (nBA) cations. The (R,S-MBA0.5nBA0.5)2PbI4 perovskites exhibit a 10-fold increase in circular dichroism signals compared to (R,S-MBA)2PbI4 perovskites. The CPL photodetectors based on the mixed-cation perovskites exhibit self-powered capabilities with a specific detectivity of 2.45 × 1012 Jones at a 0 V bias. Notably, these devices show high distinguishability (gres) factors of -0.58 and +0.54 based on (R,S-MBA0.5nBA0.5)2PbI4 perovskites, respectively, surpassing the performance of (R-MBA)2PbI4-based devices by over 3-fold and setting a record for CPL detectors based on chiral 2D n = 1 perovskites.

2.
J Am Chem Soc ; 146(5): 3136-3146, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38276886

ABSTRACT

Aqueous Zn batteries have recently emerged as promising candidates for large-scale energy storage, driven by the need for a safe and cost-effective technology with sufficient energy density and readily accessible electrode materials. However, the energy density and cycle life of Zn batteries have been limited by inherent chemical, morphological, and mechanical instabilities at the electrode-electrolyte interface where uncontrolled reactions occur. To suppress the uncontrolled reactions, we designed a crystalline polymer interphase for both electrodes, which simultaneously promotes electrode reversibility via fast and selective Zn transport through the adaptive formation of ion channels. The interphase comprises an ultrathin layer of crystalline poly(1H,1H,2H,2H-perfluorodecyl acrylate), synthesized and applied as a conformal coating in a single step using initiated chemical vapor deposition (iCVD). Crystallinity is optimized to improve interphase stability and Zn-ion transport. The optimized interphase enables a cycle life of 9500 for Zn symmetric cells and over 11,000 for Zn-MnO2 full-cell batteries. We further demonstrate the generalizability of this interphase design using Cu and Li as examples, improving their stability and achieving reversible cycling in both. The iCVD method and molecular design unlock the potential of highly reversible and cost-effective aqueous batteries using earth-abundant Zn anode materials, pointing to grid-scale energy storage.

3.
ACS Nano ; 17(22): 23079-23093, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37934023

ABSTRACT

The polaron is an essential photoexcitation that governs the unique optoelectronic properties of organic-inorganic hybrid halide perovskites, and it has been subject to extensive spectroscopic and theoretical investigation over the past decade. A crucial but underexplored question is how the nature of the photogenerated polarons is impacted by the microscopic perovskite structure and what functional properties this affects. To tackle this question, we chemically tuned the interactions between perovskite quantum dots (QDs) to rationally manipulate the polaron properties. Through a suite of time-resolved spectroscopies, we find that inter-QD interactions open an excited-state channel to form large polaron species, which exhibit enhanced spatial diffusion, slower hot polaron cooling, and a longer intrinsic lifetime. At the same time, polaronic excitons are formed in competition via localized band-edge states, exhibiting strong photoluminescence but are limited by shorter intrinsic lifetimes. This control of polaron type and function through tunable inter-QD interactions not only provides design principles for QD-based materials but also experimentally disentangles polaronic species in hybrid perovskite materials.

4.
J Am Chem Soc ; 145(42): 23214-23226, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37821455

ABSTRACT

Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.

5.
Chem Sci ; 14(34): 9207-9212, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655017

ABSTRACT

Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2'-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.

6.
J Gene Med ; 25(11): e3528, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37246449

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the leading malignant primary bone tumor in young adults and children and has a high mortality rate. Cancer-associated fibroblasts (CAFs) are major components of the tumor microenvironment, influencing cancer progression and metastasis. However, there is no systematic study on the role of CAF in OS. METHODS: We collected six OS patients' single-cell RNA sequencing data from the TISCH database, which was processed using the Seurat package. We selected gene sets from the well-known MSigDB database and resorted to the clusterprofiler package for gene set enrichment analysis (GSEA). The least absolute shrinkage and selection operator (LASSO) regression model was used for identification of the variables. Receiver operating characteristic and decision curve analyses were utilized for determining the efficacy of the monogram model. RESULTS: TOP2A+ CAFs was recognized as the carcinogenic CAFs subset, given its intense interaction with OS malignant cells and association with the critical cancer driver pathway. We intersected the differentially expressed genes of TOP2A+ CAFs with the prognostic genes selected from 88 OS samples. The acquired gene set was selected using the LASSO regression model and integrated with clinical factors to obtain a monogram model of high prognosis predicting power (area under the curve of 5 year survival at 0.883). Functional enrichment analysis revealed the detailed difference between two risk groups. CONCLUSION: We identified TOP2A+ CAFs as a subset of oncogenic CAFs in OS. Based on differentially expressed genes derived from TOP2A+ CAFs, combined with bulk transcriptome prognostic genes, we constructed a risk model that can efficiently predict OS prognosis. Collectively, our study may provide new insights for future studies to elucidate the role of CAF in OS.


Subject(s)
Bone Neoplasms , Cancer-Associated Fibroblasts , Osteosarcoma , Child , Young Adult , Humans , Osteosarcoma/genetics , Biomarkers , Carcinogenesis , Bone Neoplasms/genetics , Tumor Microenvironment/genetics
7.
Nutr Metab (Lond) ; 20(1): 22, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016458

ABSTRACT

BACKGROUND: To investigate the ameliorative effects of glucosamine (GS), chondroitin sulphate (CS) and glucosamine plus chondroitin sulphate (GC) on rheumatoid arthritis (RA) in rats, and to explore the mechanism of GS, CS and GC in improving RA based on the gut microbiota. METHODS: RA rat models were effectively developed 14 days after CFA injection, and then garaged with GS, CS and GC. Body weight and paw volume of rats were monitored at multiple time points at the beginning of CFA injection. Until D36, serum and ankle tissue specimens were used to measure levels of circulating inflammatory factors (TNF-α, IL-1ß, MMP-3, NO and PGE2) and local inflammatory indicators (TLR-4 and NF-κB). On D18, D25, and D36, intergroup gut microbiota was compared using 16S rRNA gene sequencing and bioinformatics analysis. We also performed the correlation analysis of gut bacteria, joint swelling and inflammatory indicators. RESULTS: GC, rather than GS and CS, could reduce right paw volumes, levels of TLR-4 and NF-κB in synovial tissues. In addition, enriched genera in RA model rats screened out by LEfSe analysis could be inhibited by GC intervention, including potential LPS-producing bacteria (Enterobacter, Bacteroides, Erysipelotrichaceae_unclassified and Erysipelotrichaceae_uncultured) and some other opportunistic pathogens (Esherichia_Shigella, Nosocomiicoccus, NK4A214_group, Odoribacter, Corynebacterium and Candidatus_Saccharimonas.etc.) that positively correlated with pro-inflammatory cytokines, right paw volume, and pathology scores. Furthermore, the gut microbiota dysbiosis was observed to recover before alleviating joint swelling after interventions. CONCLUSIONS: GC could inhibit potential LPS-producing bacteria and the activation of TLR-4/NF-κB pathway in RA rats, thus alleviating RA-induced joint injury.

8.
Front Psychol ; 13: 918560, 2022.
Article in English | MEDLINE | ID: mdl-35846637

ABSTRACT

As the biggest black swan event of 2020, the COVID-19 pandemic has significantly weakened the ability of corporate stakeholders to monitor companies on site. In this context, exploring whether the on-site supervision restrictions triggered by the COVID-19 pandemic affect management earnings forecast disclosure is crucial to protect investors' interests and promote the stable development of the capital market. Based on quarterly data of Chinese A-share listed companies' earnings forecasts, this paper finds that: First, when the company's registry region is more severely affected by the COVID-19 pandemic, the company has less willingness to disclose its management earnings forecast. And those released forecasts tend to have lower qualities. Second, a higher level of media monitoring and a better legal environment can mitigate the negative impacts of the COVID-19 pandemic on both the willingness and the quality of management earnings forecast disclosure. Furthermore, mediating effect analysis shows that, the reduced on-site monitoring activities that were originally implemented by independent directors, institutional investors, and analysts during the epidemic period greatly limited stakeholders' monitoring efficiency, and thus cause significant influence on the disclosure of management earnings forecasts.

9.
Opt Express ; 30(2): 2402-2412, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209381

ABSTRACT

The nano-focusing performance of adiabatically designed Cartesian oval refocusing lenses is compared with other well known compound refractive lenses with parabolic profiles (both simple concave and kinoform types). Using beam propagation method (BPM) simulation, it is shown that our design based on oval lenses does significantly improve the focusing properties compared to other parabolic lens based designs, e.g. adiabatically focusing lenses (AFLs), which doesn't take into account of the refocusing effect. This points to the importance of optimizing complex lens design in improving nano-focusing lens performance.

10.
J Org Chem ; 86(9): 6765-6779, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33852309

ABSTRACT

The gram-scale synthesis of 5,6-, 6,7-, and 7,8-chromene/chromane-type aryne precursors and their applications in regioselective transformation to other functional derivatives is reported. Chromene/chromane-type arynes are generated under mild conditions, which can further undergo [2 + 2], [3 + 2], and [4 + 2] cycloaddition reactions, nucleophilic addition reactions, and σ-insertion reactions to produce structurally novel substituted chromenes and chromanes. The excellent regioselectivity of the reaction is facilitated by the oxygen-containing guiding groups at the ortho-position of the triple bond, which can be removed or switched to other functional groups including alkenyl, aryl, heteroaryl, and arylamino groups.


Subject(s)
Benzopyrans , Cycloaddition Reaction , Molecular Structure
11.
ACS Appl Mater Interfaces ; 13(3): 3521-3527, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33440931

ABSTRACT

Small-molecule impurities, such as N-nitrosodimethylamine (NDMA), have infiltrated the generic drug industry, leading to recalls in commonly prescribed blood pressure and stomach drugs in over 43 countries since 2018 and directly affecting tens of millions of patients. One promising strategy to remove small-molecule impurities like NDMA from drug molecules is by size exclusion, in which the contaminant is removed by selective adsorption onto a (micro)porous material due to its smaller size. However, current solution-phase size-exclusion separations are primarily limited by the throughput-selectivity trade-off. Here, we report a bioinspired solution to conquer these critical challenges by leveraging the assembly of atomically precise building blocks into hierarchically porous structures. We introduce a bottom-up approach to form micropores, mesopores, and macroscopic superstructures simultaneously using functionalized oxozirconium clusters as building blocks. Further, we leverage recent advances in photopolymerization to design macroscopic flow structures to mitigate backpressure. Based on these multiscale design principles, we engineer simple, inexpensive devices that are able to separate NDMA from contaminated drugs. Beyond this urgent model system, we expect this design strategy to open up hitherto unexplored avenues of nanomaterial superstructure fabrication for a range of size-exclusion purification strategies.


Subject(s)
Dimethylnitrosamine/isolation & purification , Organometallic Compounds/chemistry , Zirconium/chemistry , Adsorption , Drug Contamination , Liquid-Liquid Extraction , Models, Molecular , Porosity
12.
Chemistry ; 27(3): 1066-1071, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33000486

ABSTRACT

The 2,2-dimethyl-2H-chromene motif is widely found in many bioactive molecules, and is a privileged structure in the pharmaceutical arena. We have developed a concise and regioselective approach to chromenes and chromanes through an aryne-based synthetic strategy. A practical, gram-scale synthetic route to a chromene-type aryne precursor was explored. Subsequently, cyclization under mild conditions afforded tetracyclic xanthone skeletons with excellent regioselectivity. Our approach provides a concise strategy for the gram-scale synthesis of chromene-type xanthones such as 6-deoxyisojacareubin, cylindroxanthone D, staudtiixanthone D, brasilixanthone A and cudracuspixanthone O.

13.
J Am Chem Soc ; 142(43): 18687-18697, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33064473

ABSTRACT

Incorporating hidden length into polymer chains can improve their mechanical properties, because release of the hidden length under mechanical loads enables localized strain relief without chain fracture. To date, the design of hidden length has focused primarily on the choice of the sacrificial bonds holding the hidden length together. Here we demonstrate the advantages of adding mechanochemical reactivity to hidden length itself, using a new mechanophore that integrates (Z)-2,3-diphenylcyclobutene-1,4-dicarboxylate, with hitherto unknown mechanochemistry, into macrocyclic cinnamate dimers. Stretching a polymer of this mechanophore more than doubles the chain contour length without fracture. DFT calculations indicate that the sequential dissociation of the dimer, followed by cyclobutene isomerization at higher forces yields a chain fracture energy 11 times that of a simple polyester of the same initial contour length and preserves high energy-dissipating capacity up to ∼3 nN. In sonicated solutions cyclobutene isomerizes to two distinct products by competing reaction paths, validating the computed mechanochemical mechanism and suggesting an experimental approach to quantifying the distribution of single-chain forces under diverse loading scenarios.

14.
Nano Lett ; 20(7): 5267-5274, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32484679

ABSTRACT

Understanding the mechanism and ultimately directing nanocrystal (NC) superlattice assembly and attachment have important implications on future advances in this emerging field. Here, we use 4D-STEM to investigate a monolayer of PbS NCs at various stages of the transformation from a hexatic assembly to a nonconnected square-like superlattice over large fields of view. Maps of nanobeam electron diffraction patterns acquired with an electron microscope pixel array detector (EMPAD) offer unprecedented detail into the 3D crystallographic alignment of the polyhedral NCs. Our analysis reveals that superlattice transformation is dominated by translation of prealigned NCs strongly coupled along the <11n>AL direction and occurs stochastically and gradually throughout single grains. We validate the generality of the proposed mechanism by examining the structure of analogous PbSe NC assemblies using conventional transmission electron microscopy and selected area electron diffraction. The experimental results presented here provide new mechanistic insights into NC self-assembly and oriented attachment.

15.
ACS Omega ; 5(20): 11695-11700, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32478260

ABSTRACT

It is the first time that cadmium sulfide (CdS) nanorods have been fabricated on silicon (Si) pyramid surface by the hydrothermal reaction method. In our work, the Si pyramid morphology is able to increase the adhesion between the CdS seed layer and Si wafer. Hence, it is critical for CdS nanorods to grow successfully. During the fabrication process, the glutathione is used as the complexing agent for the formation of the CdS nanorods. By continuously adjusting the experimental conditions, the thickness of the CdS seed layer, the concentration of the glutathione, and the temperature and time of the hydrothermal reaction, the optimal condition for CdS nanorods growth on Si pyramid surface is 80 nm seed layer, 0.2-0.3 mmol glutathione, 200 °C, and 1.5 h. The Cd and S elements have a ratio of 1:1.03 from the energy-dispersive spectroscopy test, which is in agreement with the stoichiometric composition of CdS. The CdS nanorods have a bandwidth of 2.22 eV through the optical absorption spectra. The photosensitivity response test results reveal these CdS nanorods on the Si pyramid structure have an obvious photosensitive effect. From the analysis, the CdS nanorods can grow on any morphological Si surface if the adhesion between the CdS seed layer and the Si surface is strong enough.

16.
Chem Sci ; 10(36): 8367-8373, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31803415

ABSTRACT

Multi-network elastomers are both stiff and tough by virtue of containing a pre-stretched stiff network that can rupture and dissipate energy under load. However, the rupture of this sacrificial network in all described covalent multi-network elastomers is irreversible. Herein, we describe the first example of multi-network elastomers with a reformable sacrificial network containing mechanochemically sensitive anthracene-dimer cross-links. These cross-links also make our elastomers mechanochromic, with coloration that is both persistent and reversible, because the fluorogenic moiety (anthracene dimer) is regenerated upon irradiation of the material. In proof-of-concept experiments we demonstrate the utility of incorporating anthracene dimers in the backbone of the sacrificial network for monitoring mechanochemical remodeling of multi-network elastomers under cycling mechanical load. Stretching or compressing these elastomers makes them fluorescent and irradiating them eliminates the fluorescence by regenerating anthracene dimers. Reformable mechanochromic cross-links, exemplified by anthracene dimers, hold potential for enabling detailed studies of the molecular origin of the unique mechanical properties of multi-network elastomers.

17.
Nat Commun ; 8(1): 1147, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079772

ABSTRACT

Mechanochemistry offers exciting opportunities for molecular-level engineering of stress-responsive properties of polymers. Reactive sites, sometimes called mechanophores, have been reported to increase the material toughness, to make the material mechanochromic or optically healable. Here we show that macrocyclic cinnamate dimers combine these productive stress-responsive modes. The highly thermally stable dimers dissociate on the sub-second timescale when subject to a stretching force of 1-2 nN (depending on isomer). Stretching a polymer of the dimers above this force more than doubles its contour length and increases the strain energy that the chain absorbs before fragmenting by at least 600 kcal per mole of monomer. The dissociation produces a chromophore and dimers are reformed upon irradiation, thus allowing optical healing of mechanically degraded parts of the material. The mechanochemical kinetics, single-chain extensibility, toughness and potentially optical properties of the dissociation products are tunable by synthetic modifications.

18.
Angew Chem Int Ed Engl ; 55(9): 3040-4, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26805709

ABSTRACT

Incorporation of small reactive moieties, the reactivity of which depends on externally imposed load (so-called mechanophores) into polymer chains offers access to a broad range of stress-responsive materials. Here, we report that polymers incorporating spirothiopyran (STP) manifest both green mechanochromism and load-induced addition reactions in solution and solid. Stretching a macromolecule containing colorless STP converts it into green thiomerocyanine (TMC), the mechanically activated thiolate moiety of which undergoes rapid thiol-ene click reactions with certain reactive C=C bonds to form a graft or a cross-link. The unique dual mechanochemical response of STP makes it of potentially great utility both for the design of new stress-responsive materials and for fundamental studies in polymer physics, for example, the dynamics of physical and mechanochemical remodeling of loaded materials.

19.
Top Curr Chem ; 369: 135-207, 2015.
Article in English | MEDLINE | ID: mdl-25791486

ABSTRACT

Although existing since the concept of macromolecules, polymer mechanochemistry is a burgeoning field which attracts great scientific interest in its ability to bias conventional reaction pathways and its potential to fabricate mechanoresponsive materials. We review here the effect of topology on the mechanical degradation of polymer chains and the activation of mechanophores in polymer backbones. The chapter focuses on both experimental and theoretical work carried out in the past 70 years. After a general introduction (Sect. 1), where the concept, the history, and the application of polymer mechanochemistry are briefly described, flow fields to study polymer mechanochemistry are discussed (Sect. 2), results of mechanochemistry study are presented for linear polymers (Sect. 3), cyclic polymers (Sect. 4), graft polymers (Sect. 5), star-shaped polymers (Sect. 6), hyperbranched polymers and dendrimers (Sect. 7), and systems with dynamic topology (Sect. 8). Here we focus on (1) experimental results involving the topological effect on the coil-to-stretch transition and the fracture of the polymer chains, (2) the underlying mechanisms and the key factor that determines the mechanical stability of the macromolecules, (3) theoretical models that relate to the experimental observations, and (4) rational design of mechanophores in complex topology to achieve multiple activations according to the existing results observed in chain degradation.

20.
ACS Macro Lett ; 3(2): 141-145, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-35590494

ABSTRACT

A mechanically active spiropyran (SP) mechanophore is incorporated into the backbone of prepolymer which is further end-capped with ureidopyrimidinone (UPy) or urethane. Strong mechanochromic reaction of SP arises in the bulk films of UPy containing materials whereas much weaker activation occurs in urethane containing counterparts, coincident with their stress-strain responses. The difference in the magnitudes of supramolecular interactions leads to different degrees of chain orientation and strain induced crystallization (SIC) in the bulk and consequently distinct capabilities to transfer the load to the mechanophores. This study may aid the design of novel mechanoresponsive materials whose mechanoresponsiveness can be tailored by tuning supramolecular interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...