Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 383, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896301

ABSTRACT

Herpes simplex virus type 1 (HSV-1) plays an important role in the field of gene therapy and viral vaccines, especially as an oncolytic virus. However, the mass production of HSV-1 viral vectors remains a challenge in the industry. In this study, a microcarrier-mediated serum-reduced medium culture was used to improve the bioprocess of HSV-1 production and increase HSV-1 yields. The composition of the culture media, which included a basal medium, serum concentration, and glutamine additive, was optimized. The process was successfully conducted in a 1 L bioreactor, and virus production was threefold greater than that of conventional processes with a 10% serum medium. The bead-to-bead transfer process was also developed to further increase scalability. In spinner flasks, the detachment rate increased from 49.4 to 80.6% when combined agitation was performed during digestion; the overall recovery proportion increased from 37.9 to 71.1% after the operational steps were optimized. Specifically, microcarrier loss was reduced during aspiration and transfer, and microcarriers and detached cells were separated with filters. Comparable cell growth was achieved with the baseline process using 2D culture as the inoculum by exchanging the subculture medium. To increase virus production after bead-to-bead transfer, critical parameters, including shear stress during digestion, TrypLE and EDTA concentrations in the subculture, and the CCI, were identified from 47 parameters via correlation analysis and principal component analysis. The optimized bead-to-bead transfer process achieved an average of 90.4% overall recovery and comparable virus production compared to that of the baseline process. This study is the first to report the optimization of HSV-1 production in Vero cells cultured on microcarriers in serum-reduced medium after bead-to-bead transfer. KEY POINTS: • An HSV-1 production process was developed that involves culturing in serum-reduced medium, and this process achieved threefold greater virus production than that of traditional processes. • An indirect bead-to-bead transfer process was developed with over 90% recovery yield in bioreactors. • HSV-1 production after bead-to-bead transfer was optimized and was comparable to that achieved with 2D culture as inoculum.


Subject(s)
Bioreactors , Culture Media , Herpesvirus 1, Human , Virus Cultivation , Herpesvirus 1, Human/growth & development , Bioreactors/virology , Culture Media/chemistry , Chlorocebus aethiops , Virus Cultivation/methods , Vero Cells , Animals
2.
Eur J Med Chem ; 268: 116232, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377825

ABSTRACT

Coronavirus entry into host cells hinges on the interaction between the spike glycoprotein of the virus and the cell-surface receptor angiotensin-converting enzyme 2 (ACE2), initiating the subsequent clathrin-mediated endocytosis (CME) pathway. AP-2-associated protein kinase 1 (AAK1) holds a pivotal role in this pathway, regulating CME by modulating the phosphorylation of the µ subunit of adaptor protein 2 (AP2M1). Herein, we report a series of novel AAK1 inhibitors based on previously reported 1,2,4a,5-tetrahydro-4H-benzo[b] [1,4]oxazino[4,3-d] [1,4]oxazine scaffold. Among 23 synthesized compounds, compound 12e is the most potent one with an IC50 value of 9.38 ± 0.34 nM against AAK1. The in vitro antiviral activity of 12e against SARS-CoV-2 was evaluated using a model involving SARS-CoV-2 pseudovirus infecting hACE2-HEK293 host cells. The results revealed that 12e was superior in vitro antiviral activity against SARS-CoV-2 entry into host cells when compared to SGC-AAK1-1 and LX9211, and its activity was comparable to that of a related and reference compound 8. Mechanistically, all AAK1 inhibitors attenuated AAK1-induced phosphorylation of AP2M1 threonine 156 and disrupted the direct interaction between AP2M1 and ACE2, ultimately inhibiting SARS-CoV-2 infection. Notably, compounds 8 and 12e exhibited a more potent effect in suppressing the phosphorylation of AP2M1 T156 and the interaction between AP2M1 and ACE2. In conclusion, novel AAK1 inhibitor 12e demonstrates significant efficacy in suppressing SARS-CoV-2 infection, and holds promise as a potential candidate for developing novel antiviral drugs against SARS-CoV-2 and other coronavirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protein Kinase Inhibitors/pharmacology , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Protein Binding , Antiviral Agents/pharmacology , Virus Internalization , Protein Serine-Threonine Kinases/metabolism
3.
ChemMedChem ; 18(14): e202200683, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37126396

ABSTRACT

Histone deacetylases (HDACs) are validated targets for the development of anticancer drugs in epigenetics. We have designed and synthesized a series of novel HDAC inhibitors based on pyrrolo[2,3-d]pyrimidine and pyrrolo[2,3-b]pyridine scaffolds. Compound B3 {(E)-3-(4-(((1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-yl)amino)methyl)phenyl)-N-hydroxyacrylamide} exhibits potent inhibitory activity against HDACs 1, 2, 3, 6, and 8 with IC50 values of 5.2, 6.0, 8.8, 4.4, and 173.0 nM, respectively. It exhibited potent antiproliferative effects against three tumour cell lines (IC50 values of 0.13, 0.37, and 1.11 µM, against MV-4-11, K562, and WSU-DLCL-2 cells, respectively) with two- to sixfold improvement relative to suberoylanilide hydroxamic acid (SAHA). Mechanistic studies on WSU-DLCL-2 cells revealed that B3 exhibits anticancer effects through the induction of G0 /G1 -phase arrest and promotion of apoptosis. The results of this study warrant further investigation of this compound series for the treatment of hematological malignancy.


Subject(s)
Antineoplastic Agents , Histone Deacetylase Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Drug Design , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Pyrimidines/pharmacology , Pyridines/pharmacology , Cell Proliferation , Hydroxamic Acids/pharmacology
4.
Int J Biol Macromol ; 232: 123473, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36731707

ABSTRACT

Uncontrolled hemorrhage is a main cause of pre-hospital death. Given the importance of hemostatic wound dressings in pre-hospital emergency treatment, novel composite materials are required for fast hemostasis, synergistic bacterial ablation with negligible resistance and wound healing acceleration. Herein, multifunctional SCTF cryogels were fabricated by the simultaneous cross-linking of sodium alginate (SA) and tannic acid (TA) with Fe3+ ions. As a result, the prepared SCTF cryogels consisted of Fe3+/TA-based metal phenolic networks (MPNs) and Fe3+/SA-based 3D skeleton for collagen (CA). MPNs endowed the cryogels with photothermal effect, photothermal-enhanced Fenton activity and pH/photothermal dual-responsive release property of TA and Fe2+, which were beneficial for the antibacterial capacity. Due to the intrinsic high porosity, in vitro and in vivo assays demonstrated that SCTF cryogels possessed good hemostatic capacity. Moreover, the synergistic photothermal therapy (PTT), chemodynamic therapy (CDT) and pH/photothermal responsive chemo-therapy dramatically enhanced the bactericidal efficacy of SCTF cryogels both in vitro and in vivo. Eventually, their outstanding healing-accelerating effects were confirmed via animal experiments, which were attributed to the presence of CA and TA. Therefore, the developed composite materials could offer new strategy on exploiting multifunctional wound dressing for clinical applications in the future.


Subject(s)
Cryogels , Hemostatics , Animals , Cryogels/pharmacology , Alginates/pharmacology , Wound Healing , Collagen , Metals , Anti-Bacterial Agents/pharmacology
5.
ACS Omega ; 8(5): 4889-4898, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36777611

ABSTRACT

As novel wound dressings, cryogels with rapid hemostatic property and good sterilization effect are urgently desirable for wound healing. To reduce the use of antibiotics, antibacterial photothermal therapy with broad-spectrum bactericidal capacity and non-obvious bacterial resistance has been widely researched. However, photothermal agents usually suffer from poor hemostatic ability. In this research, sodium alginate (SA) and epigallocatechin gallate (EGCG) were non-covalently cross-linked in suit by ferric ions to obtain SA/EGCG/Fe (SEF) cryogels after lyophilization as an antibacterial wound dressing. Next, its photothermal performance was intensively assessed. Moreover, its hemostasis and bactericidal effect were evaluated. First, it displayed extraordinary photothermal ability owing to the formation of Fe3+/EGCG-based metal phenolic networks (MPNs) inside the SEF cryogel. Furthermore, in vitro and in vivo assays illustrated that it exhibits rapid hemostatic capacity owing to its high porosity and MPN-mediated cell adhesion capacity. In conclusion, the SEF cryogel manifests satisfactory hemostatic and bactericidal properties. Therefore, it is a promising wound-dressing candidate for clinical applications.

6.
Waste Manag Res ; 41(4): 860-870, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36412577

ABSTRACT

Waste generation and disposal have been a global issue for decades. The total global greenhouse gas (GHG) emissions in 2019 were 49,758 MtCO2e with waste disposal accounting for 3.2%. With rapid urbanization trends, municipal solid waste (MSW) has become a global challenge which needs to be addressed. A large fraction of MSW such as food wastes, e-waste among others still ends up with unregulated dumps or openly burned in low-income countries. As a response, China initiated the 'zero-waste' pilot program which has been running since 2019. To investigate the potential contribution of MSW management to GHG reductions, this study selected four 'zero-waste' cities in China, namely Shenzhen, Panjin, Xining and Tongling, as case studies to assess the impacts of different MSW management policies on GHG reductions from 2015 to 2019. Results demonstrated that Shenzhen city achieved progress in reducing GHGs, which decreased by more than 40% between 2015 and 2019. This study provides policy recommendations and waste management approaches and practices to optimize MSW management and reduction of GHGs.


Subject(s)
Greenhouse Gases , Refuse Disposal , Waste Management , Greenhouse Effect , Refuse Disposal/methods , Solid Waste/analysis , Cities , China
7.
ACS Omega ; 7(38): 33821-33829, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188296

ABSTRACT

To reduce the drug resistance of bacteria and enhance the antibacterial ability in bacterial infection therapy, we designed a new antibacterial nanoagent. In this system, a photosensitizer (indocyanine green, ICG) was loaded in bovine serum albumin (BSA) through hydrophobic-interaction-induced self-assembly to form stable BSA@ICG nanoparticles. Furthermore, a positively charged antibacterial peptide bacitracin (Bac) was physically immobilized onto the surface of BSA@ICG to generate a bacterial-targeted nanomedicine BSA@ICG@Bac through electrostatic interactions. Afterward, its photodynamic and photothermal activities were intensely evaluated. Moreover, its bactericidal efficiency was assessed via in vitro antibacterial assays and bacterial biofilm destruction tests. First, the obtained BSA@ICG@Bac showed both good singlet oxygen generation property and high photothermal conversion efficiency. In addition, it showed enhanced photodynamic and photothermal antibacterial capacities and biofilm-removing ability in vitro due to Bac modification. To sum up, our research provided an economic and less-time-consuming approach to preparing antibacterial nanomedicines with excellent antibacterial ability. Therefore, the prepared antibacterial nanomedicines have great potential to be utilized in clinical trials in the future.

8.
Accid Anal Prev ; 176: 106810, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049285

ABSTRACT

Pedestrian vehicle conflicts at non-signalized crosswalks are a world-wide safety concern. Although the "pedestrian priority" policy is applied in some regions to improve pedestrian safety, its effect needs further investigation. This study proposes the Lane-based Distance-Velocity model (LDV) to investigate pedestrian-vehicle interaction at non-signalized crosswalks. Compared with the DV model, the LDV model considers the lateral distance between vehicles and pedestrians. Therefore, the LDV model extends the application of the DV model by allowing it to be applied not only on one-lane streets to multi-lane streets. The conflict severities of pedestrian-vehicle interaction in the LDV model are classified into four categories: safe-passage, mild-interaction, potential-conflict and potential-collision. Based on that, pedestrian crossing decisions are graded as safe-crossing, risky-crossing, and dangerous-crossing. The experimental data are collected at a non-signalized crosswalk through drone footage collected in Xi'an City (China) with a Machine Vision Intelligent Algorithm. The model is tested through a case study to evaluate pedestrian crossing safety when interacting with private cars and taxis. Results from the case study suggest that the proposed model works well in the pedestrian-vehicle interaction analysis. Firstly, 87.9% of drivers are willing to provide right-of-way to pedestrians when they have enough time to react and yield. Then, both the DV model and LDV model have reached consistent conclusions: the deliberate violation rate (DVR) of taxi drivers is 22.64%, which is double that of private car drivers. Last, taxis commit a higher percentage of pedestrians' dangerous or risky crossing situations than private cars. Relevant government departments can utilize the results of this study to manage urban traffic better and improve pedestrian safety.


Subject(s)
Pedestrians , Accidents, Traffic/prevention & control , Automobiles , Cities , Humans , Safety , Walking
9.
Acta Biomater ; 150: 367-379, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35917907

ABSTRACT

Due to the negligible bacterial resistance, chemodynamic therapy (CDT) is a promising treatment for bacterial infection. However, it is severely impeded by the constant body temperature, shortage of Fe(Ⅱ) ions and insufficient H2O2 level in infected tissue. To enhance the therapeutic efficiency of CDT, improved strategies are urgently needed to tackle these problems. Herein, we exploited an infection microenvironment-responsive nanotherapeutics for near-infrared (NIR)/dihydroartemisinin (DHA) dual-augmented antibacterial CDT. The convenient encapsulation of DHA-loaded α-Fe2O3 nanorods with metal-polyphenol networks (MPN) led to the generation of an antibacterial nanoagent Fe2O3@DHA@MPN (FDM). Afterwards, its photothermal and peroxidase-like activities were intensively studied. Furthermore, the bactericidal efficacy of FDM was evaluated through both in vitro and in vivo antibacterial assays. Firstly, FDM showed both satisfactory photothermal and NIR/DHA dual-augmented peroxidase-like activities. Besides, it exhibited a pH-responsive release behavior of both Fe(Ⅱ) ions and DHA. Moreover, it presented tannic acid-mediated bacterial adhesion effect. In vitro experiments demonstrated that FDM could achieve a satisfactory efficiency against both planktonic bacteria and biofilms. In vivo assays illustrated both the extraordinary synergistic antibacterial effect and efficient anti-inflammatory ability of FDM. The outcomes indicated that the exploited antibacterial agent could offer new insight on developing intelligent nanotherapeutics for clinical use in the future. STATEMENT OF SIGNIFICANCE: The antibacterial efficiency of chemodynamic therapy (CDT) is seriously limited by the constant body temperature, shortage of Fe(Ⅱ) ions and insufficient H2O2 level at the mildly acidic inflammatory microenvironment. To address these issues, we have developed a pH-responsive nanoagent (Fe2O3@DHA@MPN) for near-infrared (NIR)/dihydroartemisinin (DHA) dual-augmented CDT. Through the NIR-induced photothermal effect of exterior Fe(Ⅲ)/tannic acid complex, the increased local temperature led to a photothermal enhanced CDT. Besides, a continuous supply of Fe(Ⅱ) ions could be achieved by tannic acid-mediated Fe(Ⅲ) reduction. Moreover, DHA was adopted as a substitute for H2O2 to initiate DHA-mediated CDT. Both in vitro and in vivo assays demonstrated its outstanding bactericidal efficiency. Therefore, the developed nanotherapeutics could be a promising candidate for clinical trials.


Subject(s)
Ferric Compounds , Nanoparticles , Anti-Bacterial Agents/pharmacology , Artemisinins , Cell Line, Tumor , Ferrous Compounds , Hydrogen Peroxide/pharmacology , Nanoparticles/therapeutic use , Peroxidases , Tannins/pharmacology
10.
Placenta ; 114: 100-107, 2021 10.
Article in English | MEDLINE | ID: mdl-34509037

ABSTRACT

INTRODUCTION: In this study we examined the hypothesis that a hypoxic intrauterine environment causes mitochondrial dysfunction of trophoblasts in fetal growth restriction (FGR). METHODS: The mtDNA content, mRNA levels of mitochondrial encoded genes (ND6, COX I), mitochondrial membrane proteins (COX I, COX IV and VDAC), HIF-1α and BINP3 (mitophagy receptor) protein levels were examined in FGR placentas and normal placentas. The mitochondrial function (ATP production and mitochondrial membrane potential-ΔΨm) and above related proteins were further examined in hypoxic HTR-8/SVneo cells induced by cobalt chloride (CoCl2). Mitophagy and its regulating mechanism under hypoxia in FGR was also investigated. RESULTS: Compared with normal controls, both FGR placentas and CoCl2-treated trophoblast cells demonstrated statistically lower mtDNA content, reduced mRNAs of mitochondrial encoding genes, and decreased mitochondrial membrane proteins, accompanied by increased HIF-1α. Mitochondrial functions were impaired as demonstrated by decreased ATP production, and, reduced ΔΨm in CoCl2-treated cells. Meanwhile, mitophagy was markedly enhanced as indicated by increased LC3 fluorescent puncta in mitochondria of hypoxic trophoblastic cells. The upregulated BINP3 expression was demonstrated in FGR placentas as well as in hypoxic trophoblastic cells. DISCUSSION: We demonstrated that hypoxic conditions lead to impaired mitochondrial function in trophoblasts in FGR. Reduced mtDNA may be associated with enhanced mitophagy via activating HIF-1α/BINP3 signalling pathway, that may, in turn, affect nutrition and energy transfer to the growth-restricted fetus.


Subject(s)
Fetal Growth Retardation/metabolism , Hypoxia/metabolism , Mitochondria/metabolism , Placenta/metabolism , Adult , Female , Humans , Pregnancy , Trophoblasts/metabolism
11.
Article in English | MEDLINE | ID: mdl-32426336

ABSTRACT

L-Methionine (L-Met) is a sulfur-containing amino acid, which is one of the eight essential amino acids to human body. In this work, the fermentative production of L-Met with genetically engineered Escherichia coli W3110-BL in a 5-L fermentor was enhanced through supplement of Ca2+ into the fermentation medium. With the addition of 30 g/L calcium carbonate (CaCO3), the titer of L-Met and yield against glucose reached 1.48 g/L and 0.09 mol/mol glucose, 57.45% higher than those of the control, respectively. The flux balance analysis (FBA) revealed that addition of CaCO3 strengthened the tricarboxylic acid cycle and increased the intracellular ATP concentration by 39.28%. The re-distribution of carbon, ATP, and cofactors flux may collaborate to improve L-Met biosynthesis with E. coli W3110-BL. The regulation of citrate synthase and oxidative phosphorylation pathway was proposed to be important for overproduction of L-Met. These foundations provide helpful reference in the following metabolic modification or fermentation control for further improvement of L-Met biosynthesis.

12.
J Ind Microbiol Biotechnol ; 47(3): 287-297, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32052230

ABSTRACT

L-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of L-methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing L-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing L-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of L-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for L-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.


Subject(s)
Escherichia coli/metabolism , Glycerol/metabolism , Methionine/biosynthesis , Oxygen/metabolism , Biomass , Citric Acid Cycle , Escherichia coli/genetics , Fermentation , Metabolic Flux Analysis , NADP/metabolism , Pentose Phosphate Pathway , Phosphoenolpyruvate Carboxylase/metabolism
13.
3 Biotech ; 9(3): 96, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30800607

ABSTRACT

Microbial fermentation for L-methionine (L-Met) production based on natural renewable resources is attractive and challenging. In this work, the effects of medium composition and fermentation conditions were investigated to improve L-Met production by genetically engineered Escherichia coli MET-3. Statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) were adopted first to optimize the culture medium. Results of PB-designed experiments indicated that the culture medium components including glucose, yeast extract, KH2PO4, and MgSO4.7H2O had significant effects on L-Met biosynthesis. With their best-predicted concentration established by BBD (glucose 37.43 g/L, yeast extract 0.95 g/L, KH2PO4 1.82 g/L, and MgSO4.7H2O 4.51 g/L), L-Met titer was increased to 3.04 g/L from less than 2.0 g/L. For further enhancement of L-Met biosynthesis, the fermentation conditions of batch cultivation carried out in a 5-L fermentor were optimized, and the optimum results were obtained at an agitation rate of 300 rpm, medium pH of 7.0, and induction temperature of 28 °C. Based on the optimization parameters, fed-batch fermentation with the modified medium was conducted. As a result, great improvement of L-Met titer (12.80 g/L) and yield (0.13 mol/mol) were achieved, with an increase of 38.53% and 30.0% compared with those of the basal medium, respectively. Furthermore, higher L-Met productivity of 0.261 g/L/h was obtained, representing 2.13-fold higher in comparison to the original medium. The results may provide a helpful reference for further study on strain improvement and fermentation control.

14.
Reproduction ; 154(3): 319-329, 2017 09.
Article in English | MEDLINE | ID: mdl-28676532

ABSTRACT

Fetal growth restriction (FGR) threatens perinatal health and is correlated with increased incidence of fetal original adult diseases. Most cases of FGR were idiopathic, which were supposed to be associated with placental abnormality. Decreased circulating placental growth factor (PGF) was recognized as an indication of placental deficiency in FGR. In this study, the epigenetic regulation of PGF in FGR placentas and the involvement of PGF in modulation of trophoblast activity were investigated. The expression level of PGF in placental tissues was determined by RT-qPCR, immunohistochemistry and ELISA. DNA methylation profile of PGF gene was analyzed by bisulfite sequencing. Trophoblastic cell lines were treated with ZM-306416, an inhibitor of PGF receptor FLT1, to observe the effect of PGF/FLT1 signaling on cell proliferation and migration. We demonstrated that PGF was downregulated in placentas from FGR pregnancies compared with normal controls. The villous expression of PGF was positively correlated with placental and fetal weight. The CpG island inside PGF promoter was hypomethylated without obvious difference in both normal and FGR placentas. However, the higher DNA methylation at another CpG island downstream exon 7 of PGF was demonstrated in FGR placentas. Additionally, we found FLT1 was expressed in trophoblast cells. Inhibition of PGF/FLT1 signaling by a selective inhibitor impaired trophoblast proliferation and migration. In conclusion, our data suggested that the PGF expression was dysregulated, and disrupted PGF/FLT1 signaling in trophoblast might contribute to placenta dysfunction in FGR. Thus, our results support the significant role of PGF in the pathogenesis of FGR.


Subject(s)
DNA Methylation , Fetal Growth Retardation/etiology , Gene Expression Regulation, Developmental , Placenta Diseases/physiopathology , Placenta Growth Factor/metabolism , Trophoblasts/metabolism , Adult , Birth Weight , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , CpG Islands/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Exons/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Placenta Diseases/blood , Placenta Diseases/metabolism , Placenta Diseases/pathology , Placenta Growth Factor/antagonists & inhibitors , Placenta Growth Factor/genetics , Placentation , Pregnancy , Promoter Regions, Genetic/drug effects , Quinazolines/pharmacology , RNA Interference , Trophoblasts/drug effects , Trophoblasts/pathology , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism
15.
Int J Gynecol Cancer ; 27(2): 364-374, 2017 02.
Article in English | MEDLINE | ID: mdl-27922982

ABSTRACT

OBJECTIVE: The aims of this study were to make clear whether miR-21 was dysregulated in hydatidiform mole (HM) tissues and choriocarcinoma (CCA) cells, to elucidate whether aberrant miR-21 expression would affect the function of CCA cells, and to find out whether there was a relationship between miR-21 and AKT, PDCD4, and PTEN in CCA cells. METHODS: Fresh and formalin-fixed, paraffin-embedded trophoblastic tissues (normal first trimester placentas and HMs) were retrieved from the biobank in the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University. Choriocarcinoma JAR and JEG-3 cells were cultured. Expression of miR-21 in trophoblast cells and tissues was examined by quantitative real-time polymerase chain reaction. Location and distribution of miR-21 in trophoblast tissues were determinated by in situ hybridization and fluorescent in situ hybridization. The effect of miR-21 on JAR and JEG-3 cells was tested by miR-21 mimics and inhibitor transfection, followed by cell viability assay, flow cytometric analysis, and Transwell analysis. Interaction between miR-21 and its target genes in CCA cells was verified by quantitative real-time polymerase chain reaction, Western blot, and luciferase report system. RESULTS: We originally found miR-21 was markedly upregulated in HM tissues compared with normal first trimester placentas. The expression of miR-21 was exclusively confined in trophoblastic layers. Furthermore, we discovered miR-21 was significantly increased in JAR and JEG-3 cells compared with normal primary human trophoblastic cells. Moreover, we demonstrated miR-21 could promote proliferation, migration, and invasion of CCA cells. We furthermore proved miR-21 negatively regulated PDCD4 and PTEN in CCA cells and targeted to PDCD4 3'UTR directly. In addition, we confirmed that miR-21 could activate Akt pathway by phosphorylating Akt at Ser 473. CONCLUSIONS: Our results suggested miR-21 was responsible for aggressive phenotype of gestational trophoblastic disease and had the potential diagnostic and therapeutic values for gestational trophoblastic neoplasm.


Subject(s)
Choriocarcinoma/genetics , Choriocarcinoma/pathology , Hydatidiform Mole/genetics , Hydatidiform Mole/pathology , MicroRNAs/biosynthesis , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Apoptosis Regulatory Proteins/genetics , Biomimetic Materials/pharmacology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Choriocarcinoma/metabolism , Female , Humans , Hydatidiform Mole/metabolism , In Situ Hybridization , In Situ Hybridization, Fluorescence , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neoplasm Invasiveness , PTEN Phosphohydrolase/genetics , Phosphorylation , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/genetics , Transfection , Up-Regulation , Uterine Neoplasms/metabolism
16.
Sci Rep ; 6: 38946, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958341

ABSTRACT

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids-treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP.


Subject(s)
Bile Acids and Salts/pharmacology , Cellular Senescence/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Mitochondria/metabolism , Peroxiredoxin III/biosynthesis , Trophoblasts/enzymology , Bile Acids and Salts/metabolism , Cholestasis, Intrahepatic/metabolism , Cholestasis, Intrahepatic/pathology , Female , Humans , Mitochondria/pathology , Pregnancy , Pregnancy Complications/metabolism , Pregnancy Complications/pathology , Trophoblasts/pathology
17.
Yi Chuan ; 31(2): 131-6, 2009 Feb.
Article in Chinese | MEDLINE | ID: mdl-19273419

ABSTRACT

Thyroid hormone responsive spot 14 (THRSP), expressed in lipogenic tissues, is suggested as a transcription factor to regulate gene expression of rate-limiting enzymes in lipogenesis. Two THRSP isoforms, THRSPa and THRSPb, were detected at cDNA levels in chickens and ducks. Chicken THRSPa was speculated to be associated with growth development and lipid metabolism because of significant correlation between the indels in the coding region of THRSPalpha and growth, as well as abdominal fat traits of chickens. The differences of THRSP structure and expression between chickens and ducks were reviewed. Furthermore, polymorphism and genetic effects of THRSP gene in chickens and ducks were analyzed.


Subject(s)
Lipid Metabolism/genetics , Lipogenesis/physiology , Protein Isoforms/physiology , Transcription Factors/physiology , Animals , Chickens , Ducks , Gene Expression Profiling , Lipogenesis/drug effects , Lipogenesis/genetics , Thyroid Hormones/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...