Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 196: 105610, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945249

ABSTRACT

The widespread use of pesticides hampers the immune system of non-target organisms, however, there is a lack of common biomarkers to detect such effects. Myeloid differentiation primary response factor 88 (MyD88) is a crucial junction protein in the Toll-like receptor signaling pathway, which plays an important role in the inflammatory response. In this study, we investigated MyD88 as a potential biomarker for pesticide-induced stress. Phylogenetic analysis revealed that MyD88 was a conserved protein in the evolution of vertebrates and invertebrates. MyD88s usually have death domain (DD) and Toll/interleukin-1 receptor (TIR) domain. Bombyx mori (B. mori) is an important economic insect that is sensitive to toxic substances. We found microbial pesticides enhanced the expression level of MyD88 in B. mori. Transcriptome analysis demonstrated that MyD88 expression level was increased in the fatbody after dinotefuran exposure, a third-generation neonicotinoid pesticide. Moreover, the expression of MyD88 was upregulated in fatbody and midgut by imidacloprid, a first-generation neonicotinoid pesticide. Additionally, insect growth regulator (IGR) pesticides, such as methoprene and fenoxycarb, could induce MyD88 expression in the fatbody of B. mori. These results indicated that MyD88 is a potential biomarker for pesticide-induced stress in B. mori. This study provides novel insights into screening common biomarkers for multiple pesticide stresses and important implications for the development of more sustainable pest management strategies.


Subject(s)
Bombyx , Pesticides , Animals , Pesticides/pharmacology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Phylogeny , Biomarkers , Neonicotinoids/toxicity , Insect Proteins/genetics , Insect Proteins/metabolism
2.
Cell Mol Life Sci ; 80(11): 331, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870631

ABSTRACT

Juvenile hormone (JH) is an indispensable insect hormone that is critical in regulating insect development and physiology. N6-methyladenosine (m6A) is the most abundant modification of RNA that regulates RNA fate in eukaryotic organisms. However, the relationship between m6A and JH remains largely unknown. Here, we found that the application of a Juvenile hormone analog (JHA) extended the larval period of Bombyx mori and increased the weight and thickness of the cocoon. Interestingly, global transcriptional patterns revealed that m6A-related genes are specifically regulated by JHA in the posterior silk gland (PSG) that synthesizes the major component of cocoon silk. By transcriptome and m6A sequencing data conjointly, we discovered that JHA significantly regulated the m6A modification in the PSG of B. mori and many m6A-containing genes are related to nucleic acid binding, nucleus, and nucleobase-containing compound metabolism. Notably, 547 genes were significantly regulated by JHA at both the m6A modification and expression levels, especially 16 silk-associated genes, including sericin2, seroin1, Serine protease inhibitors 4 (BmSPI4), Serine protease inhibitors 5 (BmSPI5), and LIM domain-binding protein 2 (Ldb). Among them, 11 silk associated genes were significantly affected by METTL3 knockdown, validating that these genes are targets of m6A modification. Furthermore, we confirm that JHA directly regulates the expression of BmSPI4 and BmSPI5 through m6A modification of CDS regions. These results demonstrate the essential role of m6A methylation regulated by JH in PSG, and elucidate a novel mechanism by which JH affects silk gland development via m6A methylation. This study uncovers that m6A modification is a critical factor mediating the effect of JH in insects.


Subject(s)
Bombyx , Silk , Animals , Silk/genetics , Juvenile Hormones/genetics , Methylation , Bombyx/genetics , Bombyx/metabolism , Larva , Transcriptome , RNA/metabolism , Serine Proteinase Inhibitors , Insect Proteins/genetics , Insect Proteins/metabolism
3.
Environ Pollut ; 336: 122470, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657723

ABSTRACT

Dinotefuran, a third-generation neonicotinoid insecticide, is widely utilized in agriculture for pest control; however, its environmental consequences and risks to non-target organisms remain largely unknown. Bombyx mori is an economically important insect and a good toxic detector for environmental assessments. In this study, ultrastructure analysis showed that dinotefuran exposure caused an increase in autophagic vesicles in the silk gland. Dinotefuran exposure triggered elevated levels of oxidative stress in silk glands. Reactive oxygen species, oxidized glutathione disulfide, glutathione peroxidase, the activities of UDP glucuronosyl-transferase and carboxylesterase were induced in the middle silk gland, while malondialdehyde, reactive oxygen species, superoxide dismutase , oxidized glutathione disulfide were increased in the posterior silk gland. Global transcription patterns revealed the physiological responses were induced by dinotefuran. Dinotefuran exposure substantially induced the expression levels of many genes involved in the mTOR and PI3K - Akt signaling pathways in the middle silk gland, whereas many differentially expressed genes involved in fatty acid and pyrimidine metabolism were found in the posterior silk gland. Additionally, functional, ultrastructural, and transcriptomic analysis indicate that dinotefuran exposure induced an increase of autophagy in the silk gland. This study illuminates the toxicity effects of dinotefuran exposure on silkworms and provides new insights into the underlying molecular toxicity mechanisms of dinotefuran to nontarget organisms.

4.
J Hazard Mater ; 458: 131997, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37423129

ABSTRACT

As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Oxidative Stress , Neonicotinoids/metabolism , Autophagy
5.
Insect Mol Biol ; 32(3): 316-327, 2023 06.
Article in English | MEDLINE | ID: mdl-36661853

ABSTRACT

N6-methyladenosine (m6A) plays a key role in many biological processes. However, the function and evolutionary relationship of m6A-related genes in insects remain largely unknown. Here we analysed the phylogeny of m6A-related genes among 207 insect species and found that m6A-related genes are evolutionarily conserved in insects. Subcellular localization experiments of m6A-related proteins in BmN cells confirmed that BmYTHDF3 was localized in the cytoplasm, BmMETTL3, BmMETTL14, and BmYTHDC were localized in the nucleus, and FL2D was localized to both the nucleus and cytoplasm. We examined the expression patterns of m6A-related genes during the embryonic development of Bombyx mori. To elucidate the function of BmMETTL3 during the embryonic stage, RNA sequencing was performed to measure changes in gene expression in silkworm eggs after BmMETTL3 knockdown, as well as in BmN cells overexpressing BmMETTL3. The global transcriptional pattern showed that knockdown of BmMETTL3 affected multiple cellular processes, including oxidoreductase activity, transcription regulator activity, and the cation binding. In addition, transcriptomic data revealed that many observed DEGs were associated with fundamental metabolic processes, including carbon metabolism, purine metabolism, amino acid biosynthesis, and the citrate cycle. Interestingly, we found that knockdown of BmMETTL3 significantly affected Wnt and Toll/Imd pathways in embryos. Taken together, these results suggest that BmMETTL3 plays an essential role in the embryonic development of B. mori, and deepen our understanding of the function of m6A-related genes in insects.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , Methyltransferases/genetics , Gene Expression Regulation , Gene Expression Profiling , Transcriptome , Embryonic Development/genetics
6.
Insect Sci ; 30(1): 15-30, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35343650

ABSTRACT

Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.


Subject(s)
Bombyx , Butterflies , Lepidoptera , Animals , Lepidoptera/genetics , Bombyx/genetics , Butterflies/genetics , Lipocalins/genetics , Genome, Insect , Multigene Family , Phylogeny
7.
Arch Insect Biochem Physiol ; 112(4): e21995, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36575612

ABSTRACT

The imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.


Subject(s)
Bombyx , Male , Animals , Female , Bombyx/metabolism , Melanins/metabolism , Imaginal Discs/metabolism , Gene Expression Profiling , Energy Metabolism , Intercellular Signaling Peptides and Proteins/metabolism
8.
PLoS Pathog ; 18(11): e1010938, 2022 11.
Article in English | MEDLINE | ID: mdl-36383572

ABSTRACT

Baculoviruses are virulent pathogens that infect a wide range of insects. They initiate infections via specific interactions between the structural proteins on the envelopes of occlusion-derived virions (ODVs) and the midgut cell surface receptors in hosts. However, host factors that are hijacked by baculoviruses for efficient infection remain largely unknown. In this study, we identified a membrane-associated protein sucrose hydrolase (BmSUH) as an ODV binding factor during Bombyx mori nucleopolyhedrovirus (BmNPV) primary infection. BmSUH was specifically expressed in the midgut microvilli where the ODV-midgut fusion happened. Knockout of BmSUH by CRISPR/Cas9 resulted in a significantly higher survival rate after BmNPV orally infection. Liquid chromatography-tandem mass spectrometry analysis and co-immunoprecipitation analysis demonstrated that PIF protein complex required for ODV binding could interact with BmSUH. Furthermore, fluorescence dequenching assay showed that the amount of ODV binding and fusion to the midgut decreased in BmSUH mutants compared to wild-type silkworm, suggesting the role of BmSUH as an ODV binding factor that mediates the ODV entry process. Based on a multilevel survey, the data showed that BmSUH acted as a host factor that facilitates BmNPV oral infection. More generally, this study indicated that disrupting essential protein-protein interactions required for baculovirus efficient entry may be broadly applicable to against viral infection.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Membrane Proteins/metabolism , Nucleopolyhedroviruses/metabolism , Digestive System , Baculoviridae
9.
Environ Pollut ; 307: 119562, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35659910

ABSTRACT

Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Glutathione Transferase/metabolism , Guanidines , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Neonicotinoids/metabolism , Neonicotinoids/toxicity , Nitro Compounds , Phosphatidylinositol 3-Kinases/metabolism , Transcriptome
10.
Heredity (Edinb) ; 127(1): 21-34, 2021 07.
Article in English | MEDLINE | ID: mdl-33833409

ABSTRACT

Horizontal gene transfer (HGT) plays an important role in evolutionary processes as organisms adapt to their environments, and now cases of gene duplication after HGT in eukaryotes are emerging at an increasing rate. However, the fate and roles of the duplicated genes over time in eukaryotes remain unclear. Here we conducted a comprehensive analysis of the evolution of cysteine synthase (CYS) in lepidopteran insects. Our results indicate that HGT-derived CYS genes are widespread and have undergone duplication following horizontal transfer in many lepidopteran insects. Moreover, lepidopteran CYS proteins not only have ß-cyanoalanine synthase activity but also possess cysteine synthase activity that is involved in sulfur amino acid biosynthesis. Duplicated CYS genes show marked divergence in gene expression patterns and enzymatic properties, suggesting that they probably have undergone subfunctionalization and/or neofunctionalization in Lepidoptera. The gene transfer of CYS genes and subsequent duplication appears to have facilitated the adaptation of lepidopteran insects to different diets and promoted their ecological diversification. Overall, this study provides valuable insights into the ecological and evolutionary contributions of CYS in lepidopteran insects.


Subject(s)
Cysteine Synthase , Lepidoptera , Animals , Evolution, Molecular , Gene Duplication , Gene Transfer, Horizontal , Herbivory , Lepidoptera/genetics , Phylogeny
11.
Mol Biol Evol ; 38(7): 2897-2914, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33739418

ABSTRACT

Horizontal gene transfer (HGT) is a potentially critical source of material for ecological adaptation and the evolution of novel genetic traits. However, reports on posttransfer duplication in organism genomes are lacking, and the evolutionary advantages conferred on the recipient are generally poorly understood. Sucrase plays an important role in insect physiological growth and development. Here, we performed a comprehensive analysis of the evolution of insect ß-fructofuranosidase transferred from bacteria via HGT. We found that posttransfer duplications of ß-fructofuranosidase were widespread in Lepidoptera and sporadic occurrences of ß-fructofuranosidase were found in Coleoptera and Hymenoptera. ß-fructofuranosidase genes often undergo modifications, such as gene duplication, differential gene loss, and changes in mutation rates. Lepidopteran ß-fructofuranosidase gene (SUC) clusters showed marked divergence in gene expression patterns and enzymatic properties in Bombyx mori (moth) and Papilio xuthus (butterfly). We generated SUC1 mutations in B. mori using CRISPR/Cas9 to thoroughly examine the physiological function of SUC. BmSUC1 mutant larvae were viable but displayed delayed growth and reduced sucrase activities that included susceptibility to the sugar mimic alkaloid found in high concentrations in mulberry. BmSUC1 served as a critical sucrase and supported metabolic homeostasis in the larval midgut and silk gland, suggesting that gene transfer of ß-fructofuranosidase enhanced the digestive and metabolic adaptation of lepidopteran insects. These findings highlight not only the universal function of ß-fructofuranosidase with a link to the maintenance of carbohydrate metabolism but also an underexplored function in the silk gland. This study expands our knowledge of posttransfer duplication and subsequent functional diversification in the adaptive evolution and lineage-specific adaptation of organisms.


Subject(s)
Biological Evolution , Gene Duplication , Gene Transfer, Horizontal , Lepidoptera/genetics , beta-Fructofuranosidase/genetics , Animals , Female , Homeostasis , Larva/growth & development , Larva/metabolism , Lepidoptera/enzymology , Male , Sucrase/metabolism
12.
Ecol Evol ; 10(18): 9682-9695, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005339

ABSTRACT

Insects evolved adaptive plasticity to minimize the effects of the chemical defenses of their host plants. Nevertheless, the expressional response and adaptation of phytophagous specialists for long-term adaption and short-term response to host phytochemicals remains largely unexplored. The mulberry (Morus alba)-silkworm (Bombyx mori) interaction is an old and well-known model of plant-insect interaction. In this study, we examined the long-term adaption and short-term response of the mulberry-specialist silkworm to two sugar-mimic alkaloids in mulberry: the commonly encountered 1-deoxynojirimycin (1-DNJ) and occasionally encountered 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1), respectively. Global transcriptional patterns revealed that the physiological responses induced by the selective expression of genes involved in manifold cellular processes, including detoxification networks, canonical digestion processes, target enzymes, and other fundamental physiological processes, were crucial for regulating metabolic homeostasis. Comparative network analysis of the effects of exposure to D-AB1 and 1-DNJ supported the contention that B. mori produced similar and specific trajectories of changed gene expression in response to different sugar-mimic alkaloids. D-AB1 elicited a substantial proportion of downregulated genes relating to carbohydrate metabolism, catabolic process, lipid metabolism, and glycan biosynthesis and metabolism. This study dramatically expands our knowledge of the physiological adaptations to dietary sugar-mimic alkaloid intake and uncovered both metabolic evolutionarily responses and unique adaptive mechanisms previously unknown in insects.

13.
PLoS Genet ; 16(9): e1008980, 2020 09.
Article in English | MEDLINE | ID: mdl-32986708

ABSTRACT

The complex stripes and patterns of insects play key roles in behavior and ecology. However, the fine-scale regulation mechanisms underlying pigment formation and morphological divergence remain largely unelucidated. Here we demonstrated that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in spot pattern formation of Bombyx mori. Moreover, our knockout experiments showed that IDGF is suggested to impact the expression levels of the ecdysone inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further control the melanin metabolism. Furthermore, the untargeted metabolomics analyses revealed that BmIDGF significantly affected critical metabolites involved in phenylalanine, beta-alanine, purine, and tyrosine metabolism pathways. Our findings highlighted not only the universal function of IDGF to the maintenance of normal cuticle structure but also an underexplored space in the gene function affecting melanin formation. Therefore, this study furthers our understanding of insect pigment metabolism and melanin pattern polymorphisms.


Subject(s)
Bombyx/physiology , Insect Proteins/metabolism , Melanins/metabolism , Pigmentation/physiology , Animals , Bombyx/anatomy & histology , CRISPR-Cas Systems , Gene Expression Regulation , Gene Knockout Techniques , Insect Proteins/genetics , Larva/genetics , Larva/physiology , Melanins/biosynthesis , Melanins/genetics , Metabolomics/methods , Mutation , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Biochem Biophys Res Commun ; 526(2): 472-478, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32234238

ABSTRACT

Apolipoprotein D (ApoD) plays important roles in response to injury, cell differentiation, lifespan extension, and increasing stress resistance. However, the evolutionary mechanism of ApoD in insects remains largely unelucidated. We conducted a comprehensive study of the molecular evolution and functional divergence of ApoD in insects. A type I functional divergence analysis revealed significant differences among insect ApoD homologs, suggesting that they underwent functional divergence. We demonstrated that lepidopteran insects have three genes that are close homologs to ApoD and show divergences in sequence, expression pattern, and protein-protein interaction. Furthermore, positive selection was detected in lepidopteran ApoD2, and positively selected sites were located around the pocket and loop domains, which might result in conformational changes and affect binding properties. Moreover, we showed that the three ApoDs in Bombyx mori were significantly regulated by environmental stress. Thus, this work illustrates the dialectical relationship between genetic diversity and functional conservation of ApoD and highlights its unique functions in the stress response of Lepidoptera.


Subject(s)
Apolipoproteins D/genetics , Insect Proteins/genetics , Lepidoptera/genetics , Animals , Evolution, Molecular , Gene Duplication , Genes, Insect , Phylogeny , Selection, Genetic
15.
Mol Ecol ; 28(24): 5282-5298, 2019 12.
Article in English | MEDLINE | ID: mdl-31674075

ABSTRACT

Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub- and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha-helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.


Subject(s)
Evolution, Molecular , Gene Duplication/genetics , Lepidoptera/genetics , Trehalase/genetics , Animals , Catalytic Domain , Multigene Family/genetics , Protein Binding/genetics , Selection, Genetic/genetics , Trehalase/chemistry
16.
Biochem Biophys Res Commun ; 495(1): 839-845, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29128356

ABSTRACT

Recent studies highlighted that apolipoprotein D (ApoD) and its homologs exert neuroprotective and antioxidant functions in mammals and Drosophila. Unlike mammals and Drosophila, lepidopteran insects possess three distinct ApoD homologs. However, few information on their functions in lepidopteran insects are available. In this study, we investigated the protective potential of a novel ApoD homolog, BmApoD1, in Bombyx mori. Quantitative PCR analyses demonstrated that BmApoD1 is extensively expressed at low levels during the larval stage but abundantly expressed in the testis during the pupal and adult stages. Tryptophan fluorescence titration demonstrated that recombinant BmApoD1 protein can bind retinoic acid and ergosterol. In addition, we provided evidence that N-linked glycans of BmApoD1 are essential to BmApoD1 secretion, and three residues, namely, Asp69, Asp104, and Asp196, are the glycosylation sites of BmApoD1. Furthermore, we showed that BmApoD1 is significantly up-regulated in the larvae after oxidant or starvation treatment. The recombinant BmApoD1 protein can protect cells from oxidative stress induced by H2O2 and reduce actinomycin D-induced cell apoptosis. These observations, together with the transcriptional up-regulation of BmApoD1 in several tissues upon oxidative insult, identify BmApoD1 as a potent antioxidant. Our results demonstrate that BmApoD1 is critical for metabolic adaptation of B. mori to environmental challenges.


Subject(s)
Aging/metabolism , Apoptosis/physiology , Bombyx/cytology , Bombyx/metabolism , Insect Proteins/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism
17.
BMC Genomics ; 18(1): 974, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258441

ABSTRACT

BACKGROUND: Heat tolerance is a key parameter that affects insect distribution and abundance. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a devastating pest of mulberry in the main mulberry-growing regions and can cause tremendous losses to sericulture by directly feeding on mulberry leaves and transmitting viruses to Bombyx mori. Moreover, G. pyloalis shows a prominent capacity for adaptation to daily and seasonal temperature fluctuations and can survive several hours under high temperature. To date, the molecular mechanism underlying the outstanding adaptability of this pest to high temperature remains unclear. RESULTS: In this study, we performed comparative transcriptome analyses on G. pyloalis exposed to 25 and 40 °C for 4 h. We obtained 34,034 unigenes and identified 1275 and 1222 genes significantly upregulated or downregulated, respectively, by heat stress. Data from the transcriptome analyses indicated that some processes involved in heat tolerance are conserved, such as high expression of heat shock protein (HSP) genes and partial repression of metabolism progress. In addition, vitamin digestion and absorption pathways and detoxification pathways identified here provided new insights for the investigation of the molecular mechanisms of heat stress tolerance. Furthermore, transcriptome analysis indicated that immune and phosphatidylinositol signaling system have a close relationship with heat tolerance. In addition, the expression patterns of ten randomly selected genes, such as HSP and cytochrome P450, were consistent with the transcriptome results obtained through quantitative real-time PCR. CONCLUSIONS: Comparisons among transcriptome results revealed the upregulation of HSPs and genes involved in redox homeostasis, detoxication, and immune progress. However, many metabolism progresses, such as glycolysis/gluconeogenesis and fatty acid biosynthesis, were partially repressed. The results reflected that the heat tolerance of G. pyloalis is a fairly complicated process and related to a broad range of physiological regulations. Our study can improve understanding on the mechanisms of insect thermal tolerance.


Subject(s)
Heat-Shock Response/genetics , Moths/genetics , Acclimatization/genetics , Animals , Antioxidants/metabolism , Gene Expression Profiling , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/anatomy & histology , Moths/immunology , Moths/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Signal Transduction , Transcriptome
18.
BMC Pregnancy Childbirth ; 15: 329, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26653182

ABSTRACT

BACKGROUND: The nutrition and epidemiologic transition has been associated with an increasing incidence of preterm birth in developing countries, but data from large observational studies in China have been limited. Our study was to describe the trends and factors associated with the incidence of preterm birth and infant mortality due to prematurity in Hubei Province, China. METHODS: We conducted a population-based survey through the Maternal and Child Health Care Network in Hubei Province from January 2001 to December 2012. We used data from 16 monitoring sites to examine the trend and risk factors for premature birth as well as infant mortality associated with prematurity. RESULTS: A total of 818,481 live births were documented, including 76,923 preterm infants (94 preterm infants per 1,000 live births) and 2,248 deaths due to prematurity (2.75 preterm deaths per 1,000 live births). From 2001 to 2012, the incidence of preterm birth increased from 56.7 to 105.2 per 1,000 live births (P for trend < 0.05), while the infant mortality rate due to prematurity declined from 95.0 to 13.4 per 1,000 live births (P for trend < 0.05). Older maternal age, lower maternal education, use of assisted reproductive technology (ART), higher income, residence in urban areas, and infant male sex were independently associated with a higher incidence of preterm birth (all p values < 0.05). Shorter gestation, lower birth weight, and lower income were associated with a higher mortality rate, while use of newborn emergency transport services (NETS) was associated with a lower preterm mortality rate (all p values < 0.05). CONCLUSION: An increasing incidence of preterm birth and a parallel reduction in infant mortality due to prematurity were observed in Hubei Province from 2001 to 2012. Our results provide important information for areas of improvements in reducing incidence and mortality of premature birth.


Subject(s)
Infant Mortality/trends , Infant, Premature , Infant, Very Low Birth Weight , Premature Birth/epidemiology , Adult , Birth Weight , China/epidemiology , Developing Countries , Female , Forecasting , Humans , Infant , Infant, Newborn , Male , Pregnancy , Pregnancy, Multiple , Reproductive Techniques, Assisted , Risk Factors
19.
BMC Pediatr ; 15: 91, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26242232

ABSTRACT

BACKGROUND: Limited evidence has been provided on the trajectories of length, weight, and bone mineral density (BMD) among preterm infants in early life in Asian countries. METHODS: We conducted a longitudinal study, which included 652 late preterm (gestational age: 34-36.9 weeks), 486 moderate preterm (32-33.9), 291 very preterm (28-31.9), 149 extremely preterm infants (≤ 28.9) and 1434 full-term peers (≥ 37) during the first 12 months of corrected age in Wuhan, China. Weight and length were measured at birth, once randomly before term, and every month thereafter. BMD was examined at 3, 6, 9 and 12 months using dual-energy X-ray absorptiometry. RESULTS: From birth to 12 months of corrected age, growth peaks in length and weight were observed at 1-3 months among preterm infants. No catch-up growth in length, weight, and BMD was observed among preterm infants. However, accelerated growth in length, weight, and BMD was found. Among extremely preterm infants, relative to full-term infants, length was -6.77 cm (95% CI: -7.14, -6.40; P for trend < 0.001) lower during the first 12 months; weight was -1.23 kg (-1.33, -1.13; P for trend < 0.001) lower; and BMD was -0.070 g/cm(2)(-0.087, -0.053; P for trend < 0.001) lower; however, average growth rates of these measures were higher (Ps < 0.05). Small gestational age and low birth weight were independently associated with lower length, weight, and BMD. CONCLUSION: Growth peaks in length and weight among preterm infants were observed at 1-3 months. No catch-up growth in length, weight, and BMD was observed, however, there was accelerated growth in length, weight, and BMD.


Subject(s)
Body Height , Body Weight , Bone Density , Infant, Premature/growth & development , Absorptiometry, Photon , China , Gestational Age , Humans , Infant, Extremely Premature/growth & development , Longitudinal Studies
20.
J Insect Physiol ; 59(9): 906-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23831642

ABSTRACT

The regulation of the juvenile hormone (JH) titer is critical for insect development. Consequently, both regulators of JH such as juvenile hormone esterase (JHE; EC 3.1.1.1) and the appropriate regulation of these regulators are also critically important for development. To better characterize and understand JHE regulation, we identified a putative JHE binding protein gene named BmJHEBP in Bombyx mori. The full-length cDNA of BmJHEBP is 963 bp and encodes a 243 amino acid polypeptide. Its molecular weight is ∼29 kDa, as confirmed by Western blotting, and transcripts of BmJHEBP were found to be expressed in all tissues. The mRNA level of BmJHEBP in the fat body was high on day 1 of the fifth instar, followed by a decrease from day 2 to day 5; thereafter, the mRNA level increased simultaneously with an increase in the hemolymph ecdysteroid titer. This temporary expression pattern was similar to that of BmJHE in the fat body and of the JHE enzyme activity in the hemolymph. The BmJHEBP level in the fat body of male larvae was slightly higher than that of the fat body in female larvae. Moreover, this protein expression pattern is consistent with the qRT-PCR results. The in vitro fat body culture results indicate that the high titer JH III induced BmJHEBP mRNA expression, while the lower titer exhibited no significant difference at the mRNA level to the group cultivated with DMSO. These studies demonstrate that BmJHEBP might function in JHE transportation and degradation when the JH III titer is high. BmJHEBP was upregulated by 20E cultivation, but this cultivation induced less upregulation and later responses to the JH pulse. Thus, BmJHEBP is regulated by both JH and ecdysone in a balanced manner.


Subject(s)
Bombyx/genetics , Carboxylic Ester Hydrolases/metabolism , Genes, Insect , Amino Acid Sequence , Animals , Base Sequence , Bombyx/metabolism , Conserved Sequence , Female , Gene Expression Regulation, Developmental , Male , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sesquiterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...