Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(36): 85520-85533, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389754

ABSTRACT

Urban park green spaces (UPGS) constitute a vital component of urban ecosystems, and the unequal distribution of UPGS can significantly impact the well-being of residents. Therefore, investigating the spatial delineation methods of UPGS service levels from the perspective of opportunity equity contributes to enhancing people's quality of life and promoting social harmony. Taking the Yingze District of Taiyuan City as an example, this study uses a modified accessibility measurement method of UPGS with the smallest clustered unit (building) as the service demand point and the UPGS entrance/exit as the service provision point, to establish a micro-scale evaluation framework for spatial equity considering the service radius and service quality of UPGS. The findings are as follows: after setting different service radius for UPGS at different levels, additional areas not covered by UPGS service were identified compared to setting the same service radius uniformly, which could prevent these areas from being overlooked in urban plans. After considering the quality of UPGS services, additional areas with low and high UPGS service levels were identified. Accurate spatial delineation of UPGS service level can avoid wasting public resources by including areas with high service levels in the scope of new UPGS requirements, while areas with low service levels lose opportunities for consideration in future urban infrastructure planning. This study emphasizes the residents' demand for both the quantity and quality of UPGS, facilitating an accurate assessment of whether urban residents can enjoy UPGS, the number of UPGS options available to them, and evaluate the quality of UPGS services experienced. Overall, this research provides new insights for evaluating the spatial equity of urban public facilities.


Subject(s)
Ecosystem , Parks, Recreational , Humans , Quality of Life , Cities , Public Facilities , China
2.
Materials (Basel) ; 15(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591493

ABSTRACT

In order to study the synergistic effects of organic and inorganic thickening agents on the rheological properties of cement paste, the rheological parameters, thixotropy cement-paste containing limestone powder (LP), re-dispersible polymer powder (RPP), and hydroxypropyl methylcellulose ether (HPMC) were investigated using the Anton Paar MCR 102 rheometer at different resting times. The early-age hydration process, hydration products, and microstructure were also analyzed with scanning electron microscopy (SEM) and thermogravimetry analyses (TGA). The results showed that the addition of LP, RPP, and HPMC affected the rheological properties of cement paste, but the thickening mechanism between organic and inorganic thickening agents was different. The small amount of LP increased the plastic viscosity but decreased the yield stress of cement paste due to its dense filling effect. Adding 1% of RPP improved the thixotropic property of cement paste by 50%; prolonging the standing time could improve the thixotropic performance by as much as two times. Only 0.035% HPMC added to the cement paste increased the plastic viscosity by 20%, while the yield stress increased nearly twice. The more HPMC added, the more significant effect it showed. Cement paste compounds with LP, RPP, and HPMC balanced the yield stress and plastic viscosity and improved the thixotropy. The C-L6-R1.0-H0.035 paste presented as a pseudoplastic, its rheological indexes were close to one, and it was hardly affected by the resting time. The composite superposition effect of organic and inorganic thickening agents reduced the impact of resting time for all pastes. As the organic thickening component inhibited the hydration more than the LP promoted the hydration of the cement paste, indicating that the C-L6-R1.0-H0.035 paste remained in the particle fusion stage after curing for three days, as shown by the SEM images.

3.
Sensors (Basel) ; 21(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578703

ABSTRACT

The farmland area in arid and semiarid regions accounts for about 40% of the total area of farmland in the world, and it continues to increase. It is critical for global food security to predict the crop yield in arid and semiarid regions. To improve the prediction of crop yields in arid and semiarid regions, we explored data assimilation-crop modeling strategies for estimating the yield of winter wheat under different water stress conditions across different growing areas. We incorporated leaf area index (LAI) and soil moisture derived from multi-source Sentinel data with the CERES-Wheat model using ensemble Kalman filter data assimilation. According to different water stress conditions, different data assimilation strategies were applied to estimate winter wheat yields in arid and semiarid areas. Sentinel data provided LAI and soil moisture data with higher frequency (<14 d) and higher precision, with root mean square errors (RMSE) of 0.9955 m2 m-2 and 0.0305 cm3 cm-3, respectively, for data assimilation-crop modeling. The temporal continuity of the CERES-Wheat model and the spatial continuity of the remote sensing images obtained from the Sentinel data were integrated using the assimilation method. The RMSE of LAI and soil water obtained by the assimilation method were lower than those simulated by the CERES-Wheat model, which were reduced by 0.4458 m2 m-2 and 0.0244 cm3 cm-3, respectively. Assimilation of LAI independently estimated yield with high precision and efficiency in irrigated areas for winter wheat, with RMSE and absolute relative error (ARE) of 427.57 kg ha-1 and 6.07%, respectively. However, in rain-fed areas of winter wheat under water stress, assimilating both LAI and soil moisture achieved the highest accuracy in estimating yield (RMSE = 424.75 kg ha-1, ARE = 9.55%) by modifying the growth and development of the canopy simultaneously and by promoting soil water balance. Sentinel data can provide high temporal and spatial resolution data for deriving LAI and soil moisture in the study area, thereby improving the estimation accuracy of the assimilation model at a regional scale. In the arid and semiarid region of the southeastern Loess Plateau, assimilation of LAI independently can obtain high-precision yield estimation of winter wheat in irrigated area, while it requires assimilating both LAI and soil moisture to achieve high-precision yield estimation in the rain-fed area.

4.
Sci Rep ; 10(1): 4275, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144324

ABSTRACT

Water-induced erosion of iron tailings is a serious problem affecting ecological restoration, but, little is known about how the occurrence of erosion on tailings slopes and types of reclaimed substrates that are beneficial to reducing slope erosion. This study measured the slope erosion characteristics of six reclaimed substrates including loose tailings (LT), crusty tailings (CT), tailings incorporating mushroom residues (TM), tailings incorporating soil (TS), tailings incorporating soil and mushroom residues (TSM) and soil (S) in experimental soil flumes under three simulated intermittent rainfall events, with intensity of 60, 90 and 120 mm h-1 for the first, second and third event, respectively. Significant differences (p < 0.05) were found in erosion characteristics among the six reclaimed substrates. TM had the lowest sediment yield but the highest runoff volume without obvious rills. LT, CT and TS had the highest sediment yield rates and severe slope erosion morphology. With the increased number of rainfall events, the runoff rates of the six substrates all increased, but only the sediment yield rates of LT, CT and TS increased, the sediment yield rates of other substrates increased first and then decreased. Therefore, adding agricultural organic wastes such as mushroom residues to tailings and reducing soil addition may be an effective way to reduce erosion and promote ecological restoration in soilless tailings areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...