Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Cell Death Dis ; 15(8): 598, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153998

ABSTRACT

The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.


Subject(s)
Hair Follicle , Regeneration , Toll-Like Receptor 9 , Wound Healing , Animals , Hair Follicle/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Mice , Mice, Inbred C57BL , Amphiregulin/metabolism , Amphiregulin/genetics , Cell Movement , Mice, Knockout , Keratinocytes/metabolism , Intraepithelial Lymphocytes/metabolism
2.
J Clin Transl Hepatol ; 12(7): 667-676, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38993512

ABSTRACT

Acute-on-chronic liver failure (ACLF) is a distinct condition characterized by the abrupt exacerbation of pre-existing chronic liver disease, often leading to multi-organ failures and significant short-term mortalities. Bacterial infection is one of the most frequent triggers for ACLF and a common complication following its onset. The impact of bacterial infections on the clinical course and outcome of ACLF underscores their critical role in the pathogenesis of systemic inflammation and organ failures. In addition, the evolving epidemiology and increasing prevalence of multidrug-resistant bacteria in cirrhosis and ACLF highlight the importance of appropriate empirical antibiotic use, as well as accurate and prompt microbiological diagnosis. This review provided an update on recent advances in the epidemiology, diagnosis, pathogenesis, and management of bacterial infections in ACLF.

3.
Biomaterials ; 311: 122685, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38944969

ABSTRACT

Extracellular matrix (ECM) scaffold membranes have exhibited promising potential to better the outcomes of wound healing by creating a regenerative microenvironment around. However, when compared to the application in younger individuals, the performance of the same scaffold membrane in promoting re-epithelialization and collagen deposition was observed dissatisfying in aged mice. To comprehensively explore the mechanisms underlying this age-related disparity, we conducted the integrated analysis, combing single-cell RNA sequencing (scRNA-Seq) with spatial transcriptomics, and elucidated six functionally and spatially distinctive macrophage groups and lymphocytes surrounding the ECM scaffolds. Through intergroup comparative analysis and cell-cell communication, we characterized the dysfunction of Spp1+ macrophages in aged mice impeded the activation of the type Ⅱ immune response, thus inhibiting the repair ability of epidermal cells and fibroblasts around the ECM scaffolds. These findings contribute to a deeper understanding of biomaterial applications in varied physiological contexts, thereby paving the way for the development of precision-based biomaterials tailored specifically for aged individuals in future therapeutic strategies.


Subject(s)
Extracellular Matrix , Macrophages , Tissue Scaffolds , Wound Healing , Animals , Extracellular Matrix/metabolism , Tissue Scaffolds/chemistry , Mice , Macrophages/metabolism , Aging , Mice, Inbred C57BL , Fibroblasts/metabolism , Male , Humans , Biocompatible Materials/chemistry
4.
Article in English | MEDLINE | ID: mdl-38922492

ABSTRACT

Microbial proteins represent a promising solution to address the escalating global demand for protein, particularly in regions with limited arable land. Yeasts, such as Saccharomyces cerevisiae, are robust and safe protein-producing strains. However, the utilization of non-conventional yeast strains for microbial protein production has been hindered, partly due to a lack of comprehensive understanding of protein production traits. In this study, we conducted experimental analyses focusing on the growth, protein content, and amino acid composition of nine yeast strains, including one S. cerevisiae strain, three Yarrowia lipolytica strains, and five Pichia spp. strains. We identified that, though Y. lipolytica and Pichia spp. strains consumed glucose at a slower rate compared to S. cerevisiae, Pichia spp. strains showed a higher cellular protein content, and Y. lipolytica strains showed a higher glucose-to-biomass/protein yield and methionine content. We further applied computational approaches to explain that metabolism economy was the main underlying factor for the limited amount of scarce/carbon-inefficient amino acids (such as methionine) within yeast cell proteins. We additionally verified that the specialized metabolism was a key reason for the high methionine content in Y. lipolytica strains, and proposed Y. lipolytica strain as a potential producer of high-quality single-cell protein rich in scarce amino acids. Through experimental evaluation, we identified Pichia jadinii CICC 1258 as a potential strain for high-quality protein production under unfavorable pH/temperature conditions. Our work suggests a promising avenue for optimizing microbial protein production, identifying the factors influencing amino acid composition, and paving the way for the use of unconventional yeast strains to meet the growing protein demands.

6.
Sci Rep ; 13(1): 20759, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007536

ABSTRACT

Our study aimed to investigate the prognostic value of neutrophil count to albumin ratio (NAR) in predicting short-term mortality of patients with decompensated cirrhosis (DC). A total of 623 DC patients were recruited from a retrospective observational cohort study. They were admitted to our hospital from January 2014 to December 2015. NAR of each patient was calculated and analyzed for the association with 90-day liver transplantation-free (LT-free) outcome. The performance of NAR and the integrated model were tested by a receiver-operator curve (ROC) and C-index. The 90-day LT-free mortality of patients with DC was 10.6%. NAR was significantly higher in 90-day non-survivors than in survivors (The median: 1.73 vs 0.76, P < 0.001). A threshold of 1.40 of NAR differentiated patients with a high risk of death (27.45%) from those with a low risk (5.11%). By multivariate analysis, high NAR was independently associated with poor short-term prognosis (high group: 5.07 (2.78, 9.22)). NAR alone had an area under the ROC curve of 0.794 and C-index of 0.7789 (0.7287, 0.8291) in predicting 90-day mortality. The integrated MELD-NAR (iMELD) model had a higher area under the ROC (0.872) and C-index (0.8558 (0.8122, 0.8994)) than the original MELD in predicting 90-day mortality. NAR can be used as an independent predictor of poor outcomes for patients with DC during short-term follow-up.


Subject(s)
Liver Cirrhosis , Neutrophils , Humans , Prognosis , Retrospective Studies , Liver Cirrhosis/complications , Albumins , ROC Curve , Severity of Illness Index
7.
Environ Toxicol ; 38(7): 1678-1689, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087754

ABSTRACT

PURPOSE: This study identified the function of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) on bladder cancer (BLCA). METHODS: NEDD4L expression in BLCA patients was scrutinized. The function of NEDD4L on the viability, apoptosis, migration and invasion of BLCA cells was evaluated by cell counting kit-8, flow cytometry and Transwell assays. The effect of NEDD4L on the cisplatin (DDP) resistance of the DDP-resistant BLCA cells was explored. The influence of NEDD4L on the p62/Keap1/Nrf2 pathway activity in BLCA cells was tested by Western blot. Rescue experiments were implemented to verify whether NEDD4L regulated BLCA cell malignant behavior by mediating the Keap1/Nrf2 pathway activity via p62. The effect of NEDD4L on the growth and the p62/Keap1/Nrf2 pathway activity in vivo was researched in xenograft tumor nude mice models. RESULTS: The down-regulated NEDD4L in BLCA patients was associated with unfavorable survival. NEDD4L suppressed the viability (inhibition rate 57.1%/49.0%), migration (inhibition rate 49.7%/77.1%), invasion (inhibition rate 50.6%/75.7%), promoted the apoptosis of T24/5637 cells (promotion rate 243.8%/201.9%), reduced IC 50 of DDP-resistant T24/5637 cells from 132.2/101.8 to 57.81/59.71 µM, respectively, and inactivated the p62/Keap1/Nrf2 pathway in T24/5637 cells. p62 up-regulation partially abrogated the inhibition of NEDD4L on the Keap1/Nrf2 pathway activity, the malignant behavior of BLCA cells, and the DDP resistance of DDP-resistant BLCA cells. NEDD4L overexpression inhibited the tumor growth and the p62/Keap1/Nrf2 pathway activity in vivo in BLCA. CONCLUSION: NEDD4L inhibits the progression of BLCA by inactivating the p62/Keap1/Nrf2 pathway. It may be an effective target for BLCA treatment.


Subject(s)
Cisplatin , Urinary Bladder Neoplasms , Animals , Mice , Humans , Cisplatin/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Nude , Signal Transduction , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Apoptosis , Cell Line, Tumor
8.
Int J Nanomedicine ; 18: 1507-1520, 2023.
Article in English | MEDLINE | ID: mdl-36998603

ABSTRACT

Purpose: A synergistic antibacterial system employing photocatalytic performance and low-temperature photothermal effect (LT-PTT) with the potential for infectious skin wound healing promotion was developed. Methods: Ag/Ag2O was synthesized with a two-step method, and its physicochemical properties were characterized. After its photocatalytic performance and photothermal effect were evaluated under 0.5 W/cm2 808 nm NIR laser irradiation, its antibacterial activities in both planktonic and biofilm forms were then studied in vitro targeting Staphylococcus Aureus (S. aureus), and the biocompatibility was tested with L-929 cell lines afterward. Finally, the animal model of dorsal skin wound infection was established on Sprague-Dawley rats and was used to assess infectious wound healing promotion of Ag/Ag2O in vivo. Results: Ag/Ag2O showed boosted photocatalytic performance and local temperature accumulation compared with Ag2O when exposed to 0.5 W/cm2 808 nm NIR irradiation, which therefore endowed Ag/Ag2O with the ability to kill pathogens rapidly and cleavage bacterial biofilm in vitro. Furthermore, after treatment with Ag/Ag2O and 0.5 W/cm2 808 nm NIR irradiation, infectious wounds of rats realized skin tissue regeneration from a histochemical level. Conclusion: By exhibiting excellent NIR-triggered photocatalytic sterilization ability enhanced by low-temperature photothermal effect, Ag/Ag2O was promising to be a novel, photo-responsive antibacterial agent.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Rats , Animals , Temperature , Rats, Sprague-Dawley , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sterilization
9.
ACS Appl Mater Interfaces ; 15(1): 391-406, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36562459

ABSTRACT

The effective treatment for periodontitis is to completely and sustainedly eradicate the bacterial pathogens from the complex periodontal pockets. Local sustained-release antibiotics as a complementary treatment after scaling and root planning can sustainedly combat bacterial pathogens in the periodontal pockets to help treat the disease, but the increasing concern of bacterial resistance limits its future use. Here, we reported a local antibacterial system based on microsized multifunctional Ag-TiO2-x encapsulated in alginate (ATA) microspheres. We confirmed that ATA displayed strong photothermally enhanced dual enzyme-mimicking (peroxidase-like and catalase-like) activities and weak photocatalytic activity under 808 nm near-infrared (NIR) irradiation, which could boost the generation of reactive oxygen species (ROS) and O2 in the presence of low-level H2O2. As a result, the ATA/H2O2/NIR system exhibited efficient antibacterial activity against Porphyromonas gingivalis and Streptococcus gordonii in both planktonic and biofilm forms. With the help of ROS, ATA could release Ag+ in concentrations sufficient to inhibit periodontal pathogens as well. Moreover, the in situ-generated oxygen was supposed to alleviate the local hypoxic environment and would help downregulate the lipopolysaccharide-mediated inflammatory response of periodontal stem cells. The in vivo rat periodontitis treatment results demonstrated that the ATA/H2O2/NIR system reduced the bacterial load, relieved inflammation, and improved tissue healing. Our work developed a new local prolonged bactericidal and oxygenation system for enhanced periodontitis. Avoiding the usage of antibiotics and nanomaterials, this strategy showed great promise in adjunctive periodontitis treatment and also in other biomedical applications.


Subject(s)
Alginates , Periodontitis , Rats , Animals , Alginates/pharmacology , Periodontal Pocket/drug therapy , Reactive Oxygen Species/pharmacology , Hydrogen Peroxide/pharmacology , Microspheres , Periodontitis/drug therapy , Periodontitis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Porphyromonas gingivalis
10.
Cell Cycle ; 22(2): 229-241, 2023 01.
Article in English | MEDLINE | ID: mdl-35980125

ABSTRACT

This study aimed to investigate the effects of scaffold matrix attachment region binding protein 1 (SMAR1) on the development of bladder cancer (BCa). SMAR1 expression in paired tumor and corresponding adjacent normal tissues from 55 BCa patients was detected by quantitative reverse transcription-polymerase chain reaction. BCa cells were transfected to regulate SMAR1 expression. BCa cells were treated with XAV-939, LiCl and 2-deoxyglucose. The effect of SMAR1 on the viability, proliferation, migration, invasion and Warburg effect of BCa cells was researched by counting kit-8, colony formation assay, Transwell and aerobic glycolysis assays. Western blot was performed to detect protein expression. BCa cell growth in vivo was recorded in nude mice. Immunohistochemical staining was performed for clinical and xenografted tumor tissue specimens. SMAR1 expression was down-regulated in BCa patients, associating with worse prognoses. SMAR1 knockdown enhanced the viability, proliferation, migration, invasion, EMT and Warburg effect of BCa cells. The opposite effect was found in the SMAR1 overexpression BCa cells. XAV-939 treatment reversed the elevation of ß-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect in Bca cells post-SMAR1 knockdown. LiCl treatment abrogated the inhibition of ß-catenin, c-Myc and Cyclin D1 proteins expression and Warburg effect proteins due to SMAR1 overexpression in BCa cells. SMAR1 overexpression inhibited the growth of BCa cells in vivo. SMAR1 might suppress the Wnt/ß-catenin signaling pathway activity to inhibit the progression of BCa. It might be an effective treatment target for BCa.


Subject(s)
Urinary Bladder Neoplasms , Wnt Signaling Pathway , Animals , Mice , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Cyclin D1/metabolism , Mice, Nude , Urinary Bladder Neoplasms/pathology , Cell Proliferation/physiology , Cell Line, Tumor , Cell Movement
11.
ACS Appl Mater Interfaces ; 13(30): 35315-35327, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34291910

ABSTRACT

The growing demand for charming smiles has led to the popularization of tooth bleaching procedures. Current tooth bleaching products with high-concentration hydrogen peroxide (HP, 30-40%) are effective but detrimental due to the increased risk of enamel destruction, tooth sensitivity, and gingival irritation. Herein, we reported a less-destructive and efficient tooth whitening strategy with a low-concentration HP, which was realized by the remarkably enhanced Fenton-like catalytic activity of oxygen-deficient TiO2 (TiO2-x). TiO2-x nanoparticles were synthesized with a modified solid-state chemical reduction approach with NaBH4. The Fenton-like activity of TiO2-x was optimized by manipulating oxygen vacancy (OV) concentration and further promoted by the near-infrared (NIR)-induced photothermal effect of TiO2-x. The TiO2-x sample named BT45 was chosen due to the highest methylene blue (MB) adsorption ability and Fenton-like activity among acquired samples. The photothermal property of BT45 under 808 nm NIR irradiation was verified and its enhancement on Fenton-like activity was also studied. The BT45/HP + NIR group performed significantly better in tooth whitening than the HP + NIR group on various discolored teeth (stained by Orange II, tea, or rhodamine B). Excitingly, the same tooth whitening performance as the Opalescence Boost, a tooth bleaching product containing 40% HP, was obtained by a self-produced bleaching gel based on this novel system containing 12% HP. Besides, negligible enamel destruction, safe temperature range, and good cytocompatibility of TiO2-x nanoparticles also demonstrated the safety of this tooth bleaching strategy. This work indicated that the photothermal-enhanced Fenton-like performance of the TiO2-x-based system is highly promising in tooth bleaching application and can also be extended to other biomedical applications.


Subject(s)
Metal Nanoparticles/chemistry , Titanium/chemistry , Tooth Bleaching Agents/chemistry , Tooth Bleaching/methods , Adsorption , Animals , Azo Compounds/chemistry , Benzenesulfonates/chemistry , Catalysis , Cell Line , Heating , Humans , Infrared Rays , Metal Nanoparticles/radiation effects , Metal Nanoparticles/toxicity , Mice , Rhodamines/chemistry , Tea/chemistry , Titanium/radiation effects , Titanium/toxicity , Tooth/drug effects , Tooth Bleaching Agents/chemical synthesis , Tooth Bleaching Agents/radiation effects , Tooth Bleaching Agents/toxicity
12.
J Exp Clin Cancer Res ; 40(1): 158, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33962660

ABSTRACT

BACKGROUND: Regulator of cullins 1 (ROC1) is an important catalytic subunit of cullin-RING E3 ligase. Nuclear factor-kappa B (NF-κB) signaling is closely related to tumor invasion and metastasis. Earlier, we reported that ROC1 was associated with a poor prognosis in patients with bladder cancer (BCa). However, it is unclear whether ROC1 is involved in the NF-κB signaling associated with malignant BCa progression. METHODS: The expression of ROC1 and p65 in bladder cancer and paracancerous tissues were detected by immunohistochemistry (IHC). Pearson correlation was used to assess correlation between ROC1 and p65 protein expressions. The wound-healing and transwell assays were used to monitor cell invasion and migration. The effect of ROC1 on the expression of key proteins in the NF-κB signaling was determined by immunofluorescence and western blot (WB). Cycloheximide (CHX), MG132 and immunoprecipitation assays were used to evaluate the effect of ROC1 on the ubiquitination of phosphorylated inhibitor of kappa B alpha (p-IκBα). A lung metastasis mouse model was generated to detect the role of ROC1 in tumor metastasis. RESULTS: We found that ROC1 was up-regulated in BCa tissues and cell lines, and high ROC1 levels were positively correlated with higher tumour grade, lymph node metastasis, distant metastasis and poor prognosis. Linear-regression analysis showed significant a Pearson correlation between ROC1 and nuclear p65 expression in BCa tissue microarray (TMA) samples. Functional studies demonstrated that ROC1 promoted BCa cell invasion and migration. In vitro and in vivo experiments showed that ROC1 activated NF-κB signaling by enhancing the ubiquitination of p-IκBα, which caused p65 nuclear translocation and promoted the transcription of some metastasis-related target genes, such as urokinase-type plasminogen activator receptor (uPAR), intracellular adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), and matrix metalloproteinase 9 (MMP9), resulting in promoting BCa metastasis. CONCLUSION: ROC1 plays an important role in the progression of BCa and serves as a potential diagnostic and therapeutic target for patients with BCa.


Subject(s)
Carrier Proteins/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Urinary Bladder Neoplasms/metabolism , Aged , Animals , Disease Models, Animal , Disease Progression , Heterografts , Humans , Male , Mice , Neoplasm Metastasis , Signal Transduction , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
13.
Transl Cancer Res ; 10(10): 4502-4513, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35116306

ABSTRACT

BACKGROUND: Research has shown that the progression of clear cell renal cell carcinoma (ccRCC) is modulated by long non-coding RNAs (lncRNAs). However, the roles of specific lncRNAs in the malignancy of ccRCC are still unknown. METHODS: TCGA and GSE66272 datasets were used to predict differentially expressed genes (DEGs) in ccRCC. ENCORI database was employed to display BIRC5 miRNA network and potential lncRNA interactions for miRNAs. KM plotter and correlation analyses were performed to identify the overall survival (OS)- and BIRC5-related miRNAs. Quantitative real-time PCR (qRT-PCR) was used to verify the BIRC5 mRNA in the seventy paired clinical samples of ccRCC tissues. The ccRCC A498 and 786-O were individually transfected with lncRNA SNHG3 and LINC00997 and then western blotting was used to detect the BIRC5 protein expression. The Dual-luciferase reporter assay was used to examine the regulatory interaction between lncRNA SNHG3 and microRNA (miRNA/miR)-10b-5p. RESULTS: BICR5 is associated with the progression of ccRCC. The two novel lncRNAs (LINC00997, SNHG3) were up-regulated in ccRCC tissues and positively with the BICR5 protein expression. However, Suppressing SNHG3 expression reduced BIRC5 protein expression compared with the LINC00997, most importantly, Suppressing SNHG3 expression suppressed tumor progression in vitro. In addition, SNHG3 promotes the expression of BIRC5 protein by sponging microRNA-10b-5p. CONCLUSIONS: Our findings suggest that SNHG3 plays a vital role in promoting ccRCC via the microRNA-10b-5p/BIRC5 axis and may serve as a novel therapeutic target for the treatment of patients with ccRCC.

14.
Urol Int ; 104(1-2): 135-141, 2020.
Article in English | MEDLINE | ID: mdl-31747678

ABSTRACT

OBJECTIVE: The aim of this work was to select the best elements from previous scoring systems to restructure efficient predictive models for surgery type. METHODS: Sixteen elements were selected from 7 systems (RENAL, PADUA, DAP, ZS, NephRO, ABC, and CI). They were divided into 6 categories (tumor max. size, exophytic/endophytic, correlation with collecting system or sinus, tumor location, contact situation with the parenchyma, invasion depth). Three elements, selected from 3 different categories, were integrated to establish a total of 320 new models. According to AUC rank, optimized models were developed, and these models were divided into 3 sections. An analysis of the distribution of the 6 categories was made to explore the predictive capacities of the models. RESULTS: A total of 166 consecutive patients were included. Seventy-five patients underwent radical nephrectomy operations. The AUC of the 7 systems ranged from 0.81 to 0.844. Three optimized models (AUC 0.88) were developed to predict surgery type. These optimized models were composed of DAP (D), PADUA, (sinus), and ABC; DAP (D), RENAL (N), and ABC; NePhRO (O), PADUA (UCS), and ABC. Two categories ("exophytic/endophytic," p < 0.001; "correlation with collecting system or sinus," p = 0.001) were nonuniformly distributed. CONCLUSIONS: Seven systems held good predictive power for surgery type. Three optimized models were developed. "Correlation with collecting system or sinus" is a critical factor for predicting surgery type.


Subject(s)
Kidney Neoplasms/diagnosis , Kidney Neoplasms/surgery , Kidney/anatomy & histology , Nephrectomy/standards , Severity of Illness Index , Aged , Algorithms , Area Under Curve , Female , Humans , Kidney/pathology , Kidney Neoplasms/classification , Magnetic Resonance Imaging , Male , Middle Aged , ROC Curve , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL