Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Mol Ecol ; : e17386, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751195

ABSTRACT

One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community ß-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar ß-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating ß-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired ß-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of ß-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community ß-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community ß-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on ß-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating ß-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.

2.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672475

ABSTRACT

The skin is the outer layer of the human body, and it is crucial in defending against injuries and damage. The regenerative capacity of aging and damaged skin caused by exposure to external stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern population's aesthetic standards have sparked a desire for stem-cell-based therapies that can address skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have provided a promising and effective alternative for managing skin regeneration and rejuvenation, attributing to their healing capacities that can be applied to damaged and aged skin. However, it has been established that the therapeutic effects of MSC may be primarily mediated by paracrine mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by different types of cells. They influence the physiological and pathological processes of recipient cells by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important role in intercellular communication and activating signaling pathways in target cells. Among them, miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting multiple genes and regulating various biological processes, such as participating in inflammatory responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This review can provide new clues for the diagnosis and treatment of skin damage and aging, as well as assist investigators in exploring innovative therapeutic strategies for treating a multitude of skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining healthy skin.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Skin , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Skin/metabolism , Animals , Regeneration , Mesenchymal Stem Cell Transplantation/methods
3.
Sci Total Environ ; 921: 171078, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382615

ABSTRACT

Decreased snow depth resulting from global warming has the potential to significantly impact biogeochemical cycles in cold forests. However, the specific mechanisms of how snow reduction affects litter decomposition and the underlying microbial processes remain unclear, this knowledge gap limits our ability to precisely predict ecological processes within cold forest ecosystems under climate change. Hence, a field experiment was conducted in a subalpine forest in southwestern China, involving a gradient of snow reduction levels (control, 50 %, 100 %) to investigate the effects of decreased snow on litter decomposition, as well as microbial biomass and activity, specifically focused on two common species: red birch (Betula albosinensis) and masters larch (Larix mastersiana). After one year of incubation, the decomposition rate (k-value) of the two types of litter ranged from 0.12 to 0.24 across three snow treatments. A significant lower litter mass loss, microbial biomass and enzyme activity were observed under decreased snow depth in winter. Furthermore, a hysteresis inhibitory effect of snow reduction on hydrolase activity was observed in the following growing season. Additionally, the high initial quality (lower C/N ratio) of red birch litter facilitated the colonization by a greater quantity of microorganisms, making it more susceptible to snow reduction compared to the low-quality masters larch litter. Structural equation models indicated that decreased snow depth hindered litter decomposition by altering the biological characterization of litter (e.g., microbial biomass and enzyme activity) and environmental variables (e.g., mean temperature and moisture content). The findings suggest that the potential decline in snow depth could inhibit litter decomposition by reducing microbial biomass and activity, implying that the future climate change may alter the material cycling processes in subalpine forest ecosystems.


Subject(s)
Ecosystem , Snow , Biomass , Forests , China , Plant Leaves/chemistry , Soil/chemistry
4.
Sci Total Environ ; 898: 166383, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37598961

ABSTRACT

Litter plays a crucial role in phosphorus (P) cycling, and its role in forest ecosystems may vary with different treatments and forest types. In this study, we investigated soil P fraction responses to litter removal in different forest types and how forest conversion affects the acquisition pathway of bioavailable P through an in situ controlled litter experiment. The results showed that the soil P content increased with the conversion of primary to secondary forest, which may be mostly related to the differences in nutrients and species richness between the two forest types. In addition, the main source of bioavailable P in primary forests was active organic P, while mineral P was the main bioavailable P source in secondary forests. Moreover, the three-year litter removal treatment significantly decreased the primary forest soil P fraction content while significantly increasing the secondary forest bioavailable P content. The main driving factors of the soil P fraction are also different between the two forest types, with AP activity and SOC as the major factors in the primary forest and pH as the main factor in the secondary forest.

5.
Sci Total Environ ; 881: 163416, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37059137

ABSTRACT

Livestock grazing of grassland ecosystems may induce shifts in microbe community traits and soil carbon (C) cycling; however, impacts of grassland management (grazing) on soil C- microbe community trait (microbial biomass, diversity, community structure, and enzyme activity) relationships are unclear. To address this, we conducted a global meta-analysis of 95 articles of livestock grazing studies that vary in grazing intensities (light, moderate, and high) and durations (<5 years, 5-10 years, and > 10 years). We found that gazing decreased soil organic carbon content (SOC; 10.1 %), and activities of the enzymes of saccharase (SA; 31.1 %), urease (UA; 7.0 %), and acid phosphatase (11.9 %) in topsoil. Meanwhile, the SOC, soil microbial biomass and enzyme activities consistently decreased as grazing intensity and duration prolonged. Furthermore, we observed strong linear relationships of microbe community traits with SOC (p < 0.05), but weak relationships with soil N or P (p > 0.05) in grasslands, which also depends on the grazing intensity and duration. In conclusion, our results indicate that traits of soil carbon content, soil microbe community, and in particular their relationships in global grasslands are overall significantly affected by livestock grazing, but the effects strongly depend on the grazing intensity and duration.


Subject(s)
Ecosystem , Microbiota , Animals , Grassland , Carbon , Livestock , Soil/chemistry , Nitrogen/analysis
6.
New Phytol ; 240(1): 105-113, 2023 10.
Article in English | MEDLINE | ID: mdl-36960541

ABSTRACT

Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.


Subject(s)
Fires , Wildfires , Ecosystem , Plants , Plant Leaves
7.
New Phytol ; 238(5): 1838-1848, 2023 06.
Article in English | MEDLINE | ID: mdl-36891665

ABSTRACT

Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.


Subject(s)
Mycorrhizae , Tracheophyta , Ecosystem , Wood , Plants , Nitrogen , Plant Roots
8.
Sci Total Environ ; 876: 162789, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36914138

ABSTRACT

Soil arthropods are crucial decomposers of litter at both global and local scales, yet their functional roles in mediating microbial activity during litter decomposition remain poorly understood. Here, we conducted a two-year field experiment using litterbags to assess the effects of soil arthropods on the extracellular enzyme activities (EEAs) in two litter substrates (Abies faxoniana and Betula albosinensis) in a subalpine forest. A biocide (naphthalene) was used to permit (nonnaphthalene) or exclude (naphthalene application) the presence of soil arthropods in litterbags during decomposition. Our results showed that biocide application was effective in reducing the abundance of soil arthropods in litterbags, with the density and species richness of soil arthropods decreasing by 64.18-75.45 % and 39.19-63.30 %, respectively. Litter with soil arthropods had a greater activity of C-degrading (ß-glucosidase, cellobiohydrolase, polyphenol oxidase, peroxidase), N-degrading (N-acetyl-ß-D-glucosaminidase, leucine arylamidase) and P-degrading (phosphatase) enzymes than litter from which soil arthropods were excluded. The contributions of soil arthropods to C-, N- and P-degrading EEAs in the fir litter were 38.09 %, 15.62 % and 61.69 %, and those for the birch litter were 27.97 %, 29.18 % and 30.40 %, respectively. Furthermore, the stoichiometric analyses of enzyme activity indicated that there was potential C and P colimitation in both the soil arthropod inclusion and exclusion litterbags, and the presence of soil arthropods decreased C limitation in the two litter species. Our structural equation models suggested that soil arthropods indirectly promoted C-, N- and P-degrading EEAs by regulating the litter C content and litter stoichiometry (e.g., N/P, LN/N and C/P) during litter decomposition. These results demonstrate that soil arthropods play an important functional role in modulating EEAs during litter decomposition.


Subject(s)
Abies , Arthropods , Animals , Carbon , Soil/chemistry , Forests , Betula , Plant Leaves/physiology , Naphthalenes , Soil Microbiology , Nitrogen , Ecosystem
9.
Front Plant Sci ; 13: 1009886, 2022.
Article in English | MEDLINE | ID: mdl-36204057

ABSTRACT

Studying plant-soil feedback (PSF) can improve the understanding of the plant community composition and structure; however, changes in plant-soil-enzyme stoichiometry in response to PSF are unclear. The present study aimed to analyze the changes in plant-soil-enzyme stoichiometry and microbial nutrient limitation to PSF, and identify the roles of nutrient limitation in PSF. Setaria viridis, Stipa bungeana, and Bothriochloa ischaemum were selected as representative grass species in early-, mid-, and late-succession; furthermore, three soil types were collected from grass species communities in early-, mid-, and late-succession to treat the three successional species. A 3-year (represents three growth periods) PSF experiment was performed with the three grasses in the soil in the three succession stages. We analyzed plant biomass and plant-soil-enzyme C-N-P stoichiometry for each plant growth period. The plant growth period mainly affected the plant C:N in the early- and late- species but showed a less pronounced effect on the soil C:N. During the three growth periods, the plants changed from N-limited to P-limited; the three successional species soils were mainly limited by N, whereas the microbes were limited by both C and N. The plant-soil-enzyme stoichiometry and plant biomass were not significantly correlated. In conclusion, during PSF, the plant growth period significantly influences the plant-soil-microbial nutrient limitations. Plant-soil-enzyme stoichiometry and microbial nutrient limitation cannot effectively explain PSF during succession on the Loess Plateau.

10.
Environ Sci Pollut Res Int ; 29(27): 41544-41556, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35094284

ABSTRACT

Climate warming changes the plant community composition and biodiversity. Dominate species or plant functional types (PFTs) loss may influence alpine ecosystem processes, but much uncertainty remains. This study tested whether loss of specific PFTs and vegetation variation would impact the metallic element release of mixed litter in an alpine treeline ecotone. Six representative PFTs in the alpine ecosystem on the eastern Tibetan Plateau were selected. Litterbags were used to determine the release of potassium, calcium, magnesium, sodium, manganese, zinc, copper, iron, and aluminum from litter loss of specific PFTs after 669 days of decomposition in coniferous forest (CF) and alpine shrubland (AS). The results showed that potassium, sodium, magnesium, and copper were net released, while aluminum, iron, and manganese were accumulated after 669 days. Functional type mixtures promoted the release of potassium, sodium, aluminum, and zinc (synergistic effect), while inhibiting the release of calcium, magnesium, and iron (antagonistic effect). Further, loss of specific plant functional type significantly affected the aluminum and iron release rates and the relatively mixed effects of the potassium, aluminum, and iron release rates. The synergistic effects on potassium, sodium, and aluminum in AS were greater than those in CF, while the antagonistic effect of manganese release in AS was lower than that in CF. Therefore, increased altitude may further promote the synergistic effect of potassium, sodium, and aluminum release and alleviate the antagonistic effect of manganese in mixed litter. Finally, the initial stoichiometric ratios regulate the mixed effects of elemental release rates, with the nitrogen-related stoichiometric ratios playing the most important role. The regulation of elements release by stoichiometric ratios requires more in-depth and systematic studies, which will help us to understand the influence mechanism of decomposition more comprehensively.


Subject(s)
Ecosystem , Tracheophyta , Aluminum , Calcium , Copper , Iron , Magnesium , Manganese , Plant Leaves , Plants , Potassium , Seasons , Sodium , Soil , Zinc
11.
Sci Total Environ ; 803: 150122, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525692

ABSTRACT

Loss of plant diversity affects mountain ecosystem properties and processes, yet few studies have focused on the impact of plant function type deficiency on mixed litter humification. To fill this knowledge gap, we conducted a 1279-day litterbag decomposition experiment with six plant functional types of foliar litter to determine the temporal dynamic characteristics of mixed litter humification in a coniferous forest (CF) and an alpine shrubland (AS). The results indicated that the humus concentrations, the net accumulations and their relative mixed effects (RME) of most types were higher in CF than those in AS at 146 days, and humus net accumulations fell to approximately -80% of the initial level within 1279 days. The RME of the total humus and humic acid concentrations exhibited a general change from synergistic to antagonistic effects over time, but the mixing of single plant functional type impeded the formation of fulvic acid due to consistently exhibited antagonistic effects. Ultimately, correlation analysis indicated that environmental factors (temperature, snow depth and freeze-thaw cycles) significantly hindered litter humification in the early stage, while some initial quality factors drove this process at a longer scale. Among these aspects, the concentrations of zinc, copper and iron, as well as acid-unhydrolyzable residue (AUR):nitrogen and AUR:phosphorous, stimulated humus accumulation, while water-soluble extractables, potassium, magnesium and aluminium hampered it. Deficiencies in a single plant functional type and vegetation type variations affected litter humification at the alpine treeline, which will further affect soil carbon sequestration, which is of great significance for understanding the material circulation of alpine ecosystems.


Subject(s)
Ecosystem , Plant Leaves , Forests , Seasons , Snow , Soil
12.
Sci Total Environ ; 753: 142287, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33207458

ABSTRACT

The decomposition of litter carbon (C) fraction is a major determinant of soil organic matter pool and nutrient cycling. However, knowledge of litter chemical traits regulate C fractions release is still relatively limited. A litterbag experiment was conducted using six plant functional litter types at two vegetation type (coniferous forest and alpine shrubland) in a treeline ecotone. We evaluated the relative importance of litter chemistry (i.e. Nutrient, C quality, and stoichiometry) on the loss of litter mass, non-polar extractables (NPE), water-soluble extractables (WSE), acid-hydrolyzable carbohydrates (ACID), and acid-unhydrolyzable residue (AUR) during decomposition. Litter nutrients contain nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe) and copper (Cu), litter C quality contains C, WSE, NPE, ACID, and AUR, and stoichiometry was defined by C:N, C:P; N:P, ACID:N, and AUR:N. The results showed single exponential model fitted decomposition rates of litter mass and C fractions better than double exponential or asymptotic decomposition, and the decomposition rates of C fractions were strongly correlated with initial litter nutrients, especially K, Na, Ca. Furthermore, the temporal dynamics of litter nutrients (Ca, Mg, Na, K, Zn, and Fe) strongly regulated C fractions loss during the decomposition process. Changes in litter C quality had an evident effect on the degradation of ACID and AUR, supporting the concept of "priming effect" of soluble carbon fraction. The significant differences were found in the release of NPE, WSE, and ACID rather than AUR among coniferous forest and alpine shrubland, and the vegetation type effects largely depend on the changes in litter stoichiometry, which is an important implication for the change in plant community abundance regulate decay. Collectively, elucidating the hierarchical drivers of litter chemistry on decomposition is critical to soil C sequestration in alpine ecosystems.

13.
Sci Total Environ ; 747: 141298, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32791413

ABSTRACT

Mixed litter decomposition is a common phenomenon in nature and is very important for the circulation of material through an ecosystem. Different plant functional groups (PFGs) are likely to interact during decomposition. It is unclear how mixed decomposition influences the release of multiple metallic elements, and the biogeochemical circulation mechanism in the alpine ecosystem remains elusive. In this study, a two-year experiment on decomposition of mixed litter from six dominant PFGs was conducted at two elevations in an alpine timberline ecotone using the litterbag method. First, the results suggested that PFG identity had greater impacts on the release of all metallic elements than elevation. The release rates of potassium (K), calcium (Ca), magnesium (Mg) and copper (Cu) in graminoid, deciduous shrub and forb litter were significantly higher than those in evergreen conifer, evergreen shrub and mixed litter. Second, the release of metallic elements showed non-additive effects during mixed litter decomposition. K, Ca, Mg, sodium (Na), Cu, and aluminium (Al) exhibited antagonistic effects, while Fe exhibited a synergistic effect. The antagonistic effects on Na, K, Ca and Cu release increased with increasing elevation, while the antagonistic effects on Mg, Al and Mn release decreased with increasing elevation. Third, Al and Fe showed high levels of accumulation. The K release rate decreased while Al and Fe accumulation increased with plant litter upward shift. In conclusion, mixtures of PFGs inhibits the release of multiple metallic elements during litter decomposition in the alpine timberline ecotone. We speculate that an upward shift in PFGs in response to climate warming will slow the release of K and accelerate the enrichment of Fe and Al in alpine timberline ecotones.


Subject(s)
Ecosystem , Soil , Climate , Plant Leaves , Plants
14.
Sci Total Environ ; 741: 140454, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32610243

ABSTRACT

Winter snow cover is a major driver of soil microbial processes in high-latitude and high-altitude ecosystems. Warming-induced reduction in snow cover as predicted under future climate scenarios may shift soil bacterial communities with consequences for soil carbon and nutrient cycling. The underlying mechanisms, however, remain elusive. In the present study, we conducted a snow manipulation experiment in a Tibetan spruce forest to explore the immediate and intra-annual legacy effects of snow exclusion on soil bacterial communities. We analyzed bacterial diversity and community composition in the winter (i.e., the deep snow season), in the transitional thawing period, and in the middle of the growing season. Proteobacteria, Acidobacteria, and Actinobacteria were dominant phyla across the seasons and snow regimes. Bacterial diversity was generally not particularly sensitive to the absence of snow cover. However, snow exclusion positively affected Simpson diversity in the winter but not in the thawing period and the growing season. Bacterial diversity further tended to be higher in winter than in the growing season. In the winter, the taxonomic composition shifted in response to snow exclusion, while composition did not differ between exclusion and control plots in the thawing period and the growing season. Soil bacterial communities strongly varied across seasons, and the variations differed in specific groups. Both soil climatic factors (i.e., temperature and moisture) and soil biochemical variables partly accounted for the seasonal dynamics of bacterial communities. Taken together, our study indicates that soil bacterial communities in Tibetan forests are rather resilient to change in snow cover, at least at an intra-annual scale.


Subject(s)
Snow , Soil , Ecosystem , Forests , Seasons
15.
ACS Appl Mater Interfaces ; 12(16): 19235-19242, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32223209

ABSTRACT

Multiple interface structures of M23C6 carbides precipitated at grain boundary in 100Mn13 high carbon high manganese steel, including the interface between the carbide particle and the matrix together with the interface between two adjacent carbides, were studied after 1050 °C solution treatment and subsequently after 475 °C aging treatment by high resolution transmission electron microscope (HRTEM) based on traditional transmission electron microscope (TEM). A growth model describing the adjacent M23C6 precipitations was proposed. The results show that precipitated carbide type is M23C6, which grows into both sides of austenite by a step growth mechanism. When two adjacent carbides precipitate along grain boundary, there are two cases as follows: If the two carbides have the same orientation relationship with the same austenite grain, they would grow independently to contact with each other to coalesce into a larger size carbide with the same orientation relationship. If the two carbides have different orientation relationships with the same austenite grain, and there is an original twinning in one carbide, they would grow independently to contact with each other to form a precipitated twinning.

16.
Ecotoxicol Environ Saf ; 195: 110437, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32193020

ABSTRACT

More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrastructure of absorbing roots and distribution of toxic ions in heterogeneous root systems under Cd, salinity and combined stress. Healthy annual male and female plants of P. deltoides were cultivated in soils including 5 mg kg-1 of Cd, 0.2% (w/w) of NaCl and their combination for a growth season. Our results are mainly as follows: (1) females suffered more growth inhibition, root biomass decline, root viability depression, and damage to distal root cells, but lower ability to scavenge reactive oxygen species (ROS) than the males under all stresses; (2) In both sexes, salinity adopted in the present study caused more significant negative effects on growth and organelles integrity than Cd stress, while interaction treatment did not induced a further depression in growth or more impairments in root cells of both sexes in comparison to salinity, indicating influence of combined stress was not equal simply to a superposition of the effects caused by single factors; (3) Cd and Na accumulation in root systems is highly heterogeneous and branch order-specific, with lower-order roots containing more Cd2+ but less Na+, and higher-order roots accumulating more Na+ but less Cd2+. Besides, it is noteworthy that females accumulated more Cd2+ in 1-2 order roots and more Na+ in 1-3 order roots than males under the interaction treatment. These results indicated that strategies in toxic ions accumulation in heterogeneous root systems of P. deltoides was highly branch order-specific, and may closely correlate with sex-specific root growth and physiological responses to the interaction of Cd and salinity.


Subject(s)
Cadmium/toxicity , Plant Roots/drug effects , Populus/drug effects , Sodium Chloride/toxicity , Soil Pollutants/toxicity , Biomass , Plant Roots/growth & development , Plant Roots/physiology , Populus/growth & development , Populus/physiology , Salinity , Sex , Soil
17.
Sci Total Environ ; 704: 135413, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31896227

ABSTRACT

Mountain glaciers retreat at an increased rate under global warming, resulting in exposed barren surfaces for primary succession. Soil microbes are an important driver of ecosystem processes. Although variations in soil microbes after deglaciation have been studied extensively, the roles of rhizosphere soil microbes in the biogeochemistry cycle during primary succession are less understood. In this study, Populus purdomii was present throughout the 123-year chronosequence as a representative tree species. We therefore investigated variations in the rhizosphere enzyme activity, microbial community structure, and ecoenzymatic stoichiometry of P. purdomii along Hailuogou Glacier chronosequences. The objective was to determinechanges in rhizosphere enzyme activities and microbial communities, as well as the effects of nutrient limitation on rhizosphere microbes. According to the results, the enzyme activities and microbial group biomass in rhizosphere soil all showed a bimodal trend and were highest at the 43rd or 123rd year, and enzyme activity varied with succession time but not microbial community structure. The rhizosphere soil bacterial community was the dominant community during the 123-year chronosequence. Ecoenzymatic stoichiometry indicated nitrogen restrictions on microbial activity throughout primary succession, with early succession stages (5-15 years) showing greater carbon restriction than late succession stages. Moreover, redundancy and correlation analyses demonstrated that soil microbial phospholipid fatty acid biomass was an important factor for increases in enzyme activities and that enzyme activities in turn played important roles in carbon, nitrogen and phosphorus cycling in rhizosphere soil. Additionally, rhizosphere soil microbial development significantly affected soil organic carbon, total nitrogen and dissolved organic carbon accumulation. Overall, our study links the rhizosphere microbial community and activity to successional chronosequences, providing a deeper understanding of the dynamics of ecosystem succession.


Subject(s)
Ice Cover , Rhizosphere , Carbon , Ecosystem , Nitrogen , Nutrients , Soil , Soil Microbiology
18.
Sci Rep ; 9(1): 10561, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332217

ABSTRACT

Upward shifts of alpine treelines and shrub expansion are occurring under climate change, and Abies faxoniana (AF) and Rhododendron lapponicum (RL) may become distributed at higher altitudes. How do abiotic factors and litter quality modulate the effects of soil fauna on carbon release in this context? A field decomposition experiment involving the foliar litter of AF and RL was conducted along an elevation gradient encompassing coniferous forest, alpine shrubland and alpine meadow by using litterbags with different mesh sizes (3 and 0.04 mm). The objective was to determine the influences of soil fauna, litter quality and abiotic factors on species-specific carbon release and their contributions during litter decomposition. Our findings demonstrated that higher soil fauna abundance and diversity facilitated litter carbon release. The contribution rates of soil fauna to carbon release (Cfau) decreased with elevation increasing and decomposition time. Cfau are influenced by soil faunal diversity, dominant fauna groups (Collembola, Oribatida, Mesostigmata), and abiotic factors (temperature). Soil fauna significantly and directly regulated carbon release, abiotic factors indirectly regulated carbon release via altering soil fauna community composition and litter quality. This study improve our understanding in the mechanisms of decomposer contributions to carbon cycling in the context of global climate change.

19.
Sci Rep ; 9(1): 9811, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285516

ABSTRACT

Naphthalene is a biocide of soil fauna, particularly of soil arthropods, that has been widely applied to test the functional roles of soil fauna in soil processes. However, whether the use of naphthalene to expel soil fauna has a non-target effect on soil bacteria in subalpine forests remains unclear. We conducted a naphthalene treatment experiment to explore the effects of naphthalene on the soil bacterial community in subalpine forest soil. The results suggested that naphthalene treatment (at 100 g.m-2 per month) significantly increased the abundances of total bacterial, gram-positive bacterial and gram-negative bacterial phospholipid fatty acids (PLFA) and did not change the microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) or MBC/MBN ratio. Moreover, a total of 1038 operational taxonomic units (OTUs) were detected by Illumina MiSeq sequencing analysis. Proteobacteria, Actinobacteria, and Acidobacteria Chloroflexi were the dominant phyla, and Bradyrhizobium was the most abundant genus. The naphthalene treatment did not affect soil bacterial diversity or community structure. Overall, these results demonstrated that the naphthalene treatment had non-target effects on the active bacterial community abundance but not the soil bacterial community structure. Thus, the non-target effects of naphthalene treatment should be considered before using it to expel soil fauna.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Naphthalenes/adverse effects , Soil/chemistry , Bacteria/drug effects , Biomass , China , Forests , High-Throughput Nucleotide Sequencing , Nitrogen/analysis , Phylogeny , Sequence Analysis, DNA , Soil Microbiology
20.
PLoS One ; 14(5): e0217178, 2019.
Article in English | MEDLINE | ID: mdl-31107923

ABSTRACT

Naphthalene has been widely used to test the functional roles of soil fauna, but its nontarget effects remain uncertain in various soils. To determine whether there is a potential nontarget effect on soil biochemical properties in subalpine forest soil, soils in a subalpine forest on the western Qinghai-Tibet Plateau were treated by naphthalene in microcosms. The responses of soil microbial activity and nutrients to naphthalene were studied following 52 days of incubation. The results showed that the naphthalene application obviously decreased the microbial respiration rate in the first 10 days of the incubation and then increased the rate in the following days of the incubation. Moreover, the naphthalene application did not significantly affect the microbial activities overall, measured as soil microbial phospholipid fatty acid (PLFA) abundances and biomasses, or most enzyme activities (invertase, nitrate reductase and nitrite reductase) during the whole incubation period. However, naphthalene suppressed increases in the DON, NH4+-N and NO3--N contents and urease activity and led to the net mineralization of inorganic N (NH4+-N + NO3--N), in contrast to the net immobilization result in the controls. These results suggest that naphthalene can exert direct nontarget effects on soil microbial respiration and N mineralization processes in subalpine soils. Caution should be taken when using naphthalene to repel soil animals in field experiments.


Subject(s)
Naphthalenes/pharmacology , Nitrogen/metabolism , Phosphorus/metabolism , Soil Microbiology , Soil/chemistry , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...