Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 59(6): 1971-1979, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36209399

ABSTRACT

Ants (Hymenoptera: Formicidae) are among the largest and most widespread families of terrestrial insects and are valuable to medical and ecological investigations. The mitochondrial genome has been widely used as a reliable genetic marker for species identification and phylogenetic analyses. To further understand the mitogenome-level characteristics of the congeneric Formicidae species, the complete mitogenome of Formica sinae (Hymenoptera: Formicidae) was sequenced, annotated, and compared with other 48 Formicidae species. The results showed that gene composition, content, and codon usage were conserved. The complete mitochondrial genome of F. sinae was 17,432 bp, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one control region located between rrnS and trnM, which was 1,256 bp long, the longest of all sequenced species. Gene rearrangement was not detected in Formica species (Hymenoptera: Formicidae). All PCGs of F. sinae were initiated with ATN codons and terminated with the TAA codon. The overall nucleotide composition of F. sinae was AT-biased (83.51%), being 80.58% in PCGs, 86.68% in tRNAs, 87.10% in rRNAs, and 88.70% in the control region. Phylogenetic analyses indicated that each subfamily formed a strongly monophyletic group. Furthermore, F. sinae clustered with Formica fusca (Hymenoptera: Formicidae) and Formica selysi (Hymenoptera: Formicidae). This work enhances the genetic data of Formicidae and contributes to our understanding of their phylogenic relationship, evolution, and utilization.


Subject(s)
Ants , Genome, Mitochondrial , Animals , Ants/genetics , Phylogeny , RNA, Transfer/genetics , RNA, Ribosomal , Genomics
2.
Mitochondrial DNA B Resour ; 7(6): 933-935, 2022.
Article in English | MEDLINE | ID: mdl-35692660

ABSTRACT

Messor structor (Latreille, 1798) is a keystone ant species in the genus Messor (Formicidae: Myrmicinae). Here, we reported the complete mitochondrial genome of M. structor. The circular mitogenome of M. structor is 17628 bp including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The base composition was AT-biased (84.07%). Phylogenetic analysis suggests that it is closely related to Aphaenogaster famelica. The mitochondrial genome of M. structor will be a good source for understanding molecular evolutionary studies of this species and related ant species.

3.
ACS Omega ; 5(11): 5844-5853, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226864

ABSTRACT

The effects of ozone concentration, NaOH concentration, type and concentration of additives, initial pH, temperature, and NO and SO2 concentration on simultaneous removal of NO and SO2 were studied through ozone oxidation combined with wet absorption. Results indicated that ozone concentration and the type and concentration of additives had the most significant effect on NO removal. The optimal ozone concentration was 250 ppm (NO/NO2 = 1), and the best additive was KMnO4. The removal efficiency of NO x was as high as 97.86% when NO/NO2 = 1, and the concentration of KMnO4 was 0.025 mol/L. Considering economic and other factors, the KMnO4 concentration was selected to be 0.006 mol/L. At this time, the removal efficiencies of NO x and SO2 were 81.35 and 100%, respectively. This method has potential application prospects for simultaneous removal of SO2 and NO in the industrial flue gas.

4.
Zookeys ; (770): 137-192, 2018.
Article in English | MEDLINE | ID: mdl-30002593

ABSTRACT

The genus Proceratium Roger, 1863 contains cryptic, subterranean ants that are seldom sampled and rare in natural history collections. Furthermore, most Proceratium specimens are extremely hairy and, due to their enlarged and curved gaster, often mounted suboptimally. As a consequence, the poorly observable physical characteristics of the material and its scarcity result in a rather challenging alpha taxonomy of this group. In this study, the taxonomy of the Chinese Proceratium fauna is reviewed and updated by combining examinations of traditional light microscopy with x-ray microtomography (micro-CT). Based on micro-CT scans of seven out of eight species, virtual 3D surface models were generated that permit in-depth comparative analyses of specimen morphology in order to overcome the difficulties to examine physical material of Proceratium. Eight Chinese species are recognized, of which three are newly described: Proceratium bruelheidei Staab, Xu & Hita Garcia, sp. n. and P. kepingmaisp. n. belong to the P. itoi clade and have been collected in the subtropical forests of southeast China, whereas P. shoheisp. n. belongs to the P. stictum clade and it is only known from a tropical forest of Yunnan Province. Proceratium nujiangense Xu, 2006 syn. n. is proposed as a junior synonym of P. zhaoi Xu, 2000. These taxonomic acts raise the number of known Chinese Proceratium species to eight. In order to integrate the new species into the existing taxonomic system and to facilitate identifications, an illustrated key to the worker caste of all Chinese species is provided, supplemented by species accounts with high-resolution montage images and still images of volume renderings of 3D models based on micro-CT. Moreover, cybertype datasets are provided for the new species, as well as digital datasets for the remaining species that include the raw micro-CT scan data, 3D surface models, 3D rotation videos, and all light photography and micro-CT still images. These datasets are available online (Dryad, Staab et al. 2018, http://dx.doi.org/10.5061/dryad.h6j0g4p).

SELECTION OF CITATIONS
SEARCH DETAIL
...