Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Ther ; 31(3-4): 154-164, 2024 03.
Article in English | MEDLINE | ID: mdl-38097651

ABSTRACT

The adeno-associated virus (AAV) gene therapy has been widely applied to mouse models for deafness. But, AAVs could transduce non-targeted organs after inner ear delivery due to their low cell-type specificity. This study compares transgene expression and biodistribution of AAV1, AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB after round window membrane (RWM) injection in neonatal mice. The highest virus concentration was detected in the injected cochlea. AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB transduced both inner hair cells (IHCs) and outer hair cells (OHCs) with high efficiency, while AAV1 transduced IHCs with high efficiency but OHCs with low efficiency. All AAV subtypes finitely transduced contralateral inner ear, brain, heart, and liver compared with the injected cochlea. In most brain regions, the enhanced green fluorescent protein (eGFP) expression of AAV1 and AAV2 was lower than that of other four subtypes. We suggested the cochlear aqueduct might be one of routes for vectors instantaneously infiltrating into the brain from the cochlea through a dye tracking test. In summary, our results provide available data for further investigating the biodistribution of vectors through local inner ear injection and afford a reference for selecting AAV serotypes for gene therapy toward deafness.


Subject(s)
Deafness , Genetic Vectors , Animals , Mice , Tissue Distribution , Genetic Vectors/genetics , Cochlea/metabolism , Genetic Therapy/methods , Deafness/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Transduction, Genetic
2.
Sci Transl Med ; 14(654): eabn0449, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35857824

ABSTRACT

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)-mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases.


Subject(s)
Deafness , Hearing Loss , Animals , Mice , Genes, Dominant , Hair Cells, Auditory , Hearing Loss/genetics , Hearing Loss/therapy , RNA
3.
Mol Ther Nucleic Acids ; 28: 280-292, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35433113

ABSTRACT

A wide spectrum of SLC26A4 mutations causes Pendred syndrome and enlarged vestibular aqueduct, both associated with sensorineural hearing loss (SNHL). A splice-site mutation, c.919-2A>G (A-2G), which is common in Asian populations, impairs the 3' splice site of intron 7, resulting in exon 8 skipping during pre-mRNA splicing and a subsequent frameshift that creates a premature termination codon in the following exon. Currently, there is no effective drug treatment for SHNL. For A-2G-triggered SNHL, molecules that correct mis-splicing of the mutant hold promise to treat the disease. Antisense oligonucleotides (ASOs) can promote exon inclusion when targeting specific splicing silencers. Here, we systematically screened a large number of ASOs in a minigene system and identified a few that markedly repressed exon 8 skipping. A lead ASO, which targets a heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 intronic splicing silencer (ISS) in intron 8, promoted efficient exon 8 inclusion in cultured peripheral blood mononuclear cells derived from two homozygous patients. In a partially humanized Slc26a4 A-2G mouse model, two subcutaneous injections of the ASO at 160 mg/kg significantly rescued exon 8 splicing in the liver. Our results demonstrate that the ISS-targeting ASO has therapeutic potential to treat genetic hearing loss caused by the A-2G mutation in SLC26A4.

4.
Signal Transduct Target Ther ; 7(1): 79, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35283480

ABSTRACT

CRISPR/RfxCas13d (CasRx) editing system can specifically and precisely cleave single-strand RNAs, which is a promising treatment for various disorders by downregulation of related gene expression. Here, we tested this RNA-editing approach on Beethoven (Bth) mice, an animal model for human DFNA36 due to a point mutation in Tmc1. We first screened 30 sgRNAs in cell cultures and found that CasRx with sgRNA3 reduced the Tmc1Bth transcript by 90.8%, and the Tmc1 wild type transcript (Tmc1+) by 44.3%. We then injected a newly developed AAV vector (AAV-PHP.eB) based CasRx into the inner ears of neonatal Bth mice, and we found that Tmc1Bth was reduced by 70.2% in 2 weeks with few off-target effects in the whole transcriptome. Consistently, we found improved hair cell survival, rescued hair bundle degeneration, and reduced mechanoelectrical transduction current. Importantly, the hearing performance, measured in both ABR and DPOAE thresholds, was improved significantly in all ages over 8 weeks. We, therefore, have validated the CRISPR/CasRx-based RNA editing strategy in treating autosomal-dominant hearing loss, paving way for its further application in many other hereditary diseases in hearing and beyond.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Mice , RNA Editing
6.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34174443

ABSTRACT

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Subject(s)
Gene Editing , Hearing Loss , Animals , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing , Hearing Loss/genetics , Hearing Loss/therapy , Humans , Mice , RNA, Guide, Kinetoplastida
7.
Genome Biol ; 22(1): 86, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33752742

ABSTRACT

BACKGROUND: Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. RESULTS: The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV-CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV-CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV-CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. CONCLUSIONS: These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Hearing Loss, Sensorineural/genetics , High-Temperature Requirement A Serine Peptidase 2/genetics , Animals , Cell Line , Cell Survival/genetics , Dependovirus/genetics , Disease Models, Animal , Gene Expression , Gene Targeting , Genetic Engineering , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/etiology , Hearing Loss, Sensorineural/therapy , Hearing Tests , Mice , RNA, Guide, Kinetoplastida , Transduction, Genetic , Transgenes , Treatment Outcome
8.
Nucleic Acids Res ; 47(9): e52, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30805613

ABSTRACT

The architecture and function of chromatin are largely regulated by local interacting molecules, such as transcription factors and noncoding RNAs. However, our understanding of these regulatory molecules at a given locus is limited because of technical difficulties. Here, we describe the use of Clustered Regularly Interspaced Short Palindromic Repeats and an engineered ascorbate peroxidase 2 (APEX2) system to investigate local chromatin interactions (CAPLOCUS). We showed that with specific small-guide RNA targets, CAPLOCUS could efficiently identify both repetitive genomic regions and single-copy genomic locus with high resolution. Genome-wide sequencing revealed known and potential long-range chromatin interactions for a specific single-copy locus. CAPLOCUS also identified telomere-associated RNAs. CAPLOCUS, followed by mass spectrometry, identified both known and novel telomere-associated proteins in their native states. Thus, CAPLOCUS may be a useful approach for studying local interacting molecules at any given chromosomal location.


Subject(s)
Chromatin/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , RNA, Guide, Kinetoplastida/genetics , Repetitive Sequences, Nucleic Acid/genetics , CRISPR-Cas Systems/genetics , Chromatin Immunoprecipitation , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Endonucleases , Genome/genetics , Genomics , HEK293 Cells , Humans , Multifunctional Enzymes , Protein Engineering , RNA, Guide, Kinetoplastida/chemistry , Telomere/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...