Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37571447

ABSTRACT

We propose a novel hybrid FPP-DIC technique to measure an object's shape and deformation in 3D simultaneously by using a single 3CCD color camera, which captures the blue fringe patterns and red fluorescent speckles within the same image. Firstly, red fluorescent speckles were painted on the surface of the specimen. Subsequently, 12 computer-generated blue fringe patterns with a black background were projected onto the surface of the specimen using a DLP projector. Finally, both the reference and deformed images with three different frequencies and four shifted phases were captured using a 3CCD camera. This technique employed a three-chip configuration in which red-green-blue chips were discretely integrated in the 3CCD color camera sensor, rendering independent capture of RGB information possible. Measurement of out-of-plane displacement was carried out through the implementation of Fringe Projection Profilometry (FPP), whereas the in-plane displacement was evaluated using a 2D Digital Image Correlation (DIC) method by leveraging a telecentric-lens-based optical system. In comparison to the traditional FPP-DIC hybrid methodology, the present approach showed a lower incidence of crosstalk between the fringe patterns and speckle patterns while also offering a corrective for the coupling of the in-plane displacement and out-of-plane displacement. Experimental results for the in-plane cantilever beam and out-of-plane disk comparisons with the traditional 3D-DIC method indicated that the maximum discrepancy obtained between FPP-DIC and 3D-DIC was 0.7 µm and 0.034 mm with different magnifications, respectively, validating the effectiveness and precision of the novel proposed FPP-DIC method.

2.
Materials (Basel) ; 16(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37374485

ABSTRACT

To study the compressive properties of an elastomeric porous cylinder, a 360° 3D digital image correlation (DIC) system is proposed. This compact vibration isolation table system captures different segments of the object from four different angles and fields of view, enabling a comprehensive measurement of the full surface of the object. To increase the stitching quality, a coarse-fine coordinate matching method is presented. First, a three-dimensional rigid body calibration auxiliary block is employed to track motion trajectory, which enables preliminary matching of four 3D DIC sub-systems. Subsequently, scattered speckle information characteristics guide fine matching. The accuracy of the 360° 3D DIC system is verified through a three-dimensional shape measurement conducted on a cylindrical shell, and the maximum relative error of the shell's diameter is 0.52%. A thorough investigation of the 3D compressive displacements and strains exerted on the full surface of an elastomeric porous cylinder are investigated. The results demonstrate the robustness of the proposed 360° measuring system on calculating images with voids and indicate a negative Poisson's ratio of periodically cylindrical porous structures.

3.
Chemosphere ; 65(7): 1171-81, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16698066

ABSTRACT

Tomato-processing wastewaters are typical of slowly biodegradable high strength wastewaters generated from the food canning industry. Three different samples of influent and three samples of anaerobic effluents corresponding to the three influents collected from an on-site pilot-scale anaerobic/aerobic system were characterized using respirometric methods. Respirometric studies demonstrated that the pretreatment in the anaerobic reactor of the pilot-scale system increased the readily biodegradable fraction from an average of 40% of the SCOD in the influent to 50% of the SCOD in the anaerobic effluent, improved kinetics from an average micro(max) of 1.5d(-1) in the influent to 3.5d(-1) in the anaerobic effluent, and eliminated nutrient deficiency. Furthermore, the system was calibrated and simulated by application of wastewater characterization and biokinetic data derived form respirometric tests of influent and anaerobic effluent in Activated Sludge Model no.1 (ASM1).


Subject(s)
Industrial Waste , Models, Biological , Solanum lycopersicum , Waste Disposal, Fluid , Aerobiosis , Ammonia/metabolism , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Food-Processing Industry , Nitrogen/metabolism , Oxygen/metabolism , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL