Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PeerJ Comput Sci ; 10: e2146, 2024.
Article in English | MEDLINE | ID: mdl-38983210

ABSTRACT

In recent years, the growing importance of accurate semantic segmentation in ultrasound images has led to numerous advances in deep learning-based techniques. In this article, we introduce a novel hybrid network that synergistically combines convolutional neural networks (CNN) and Vision Transformers (ViT) for ultrasound image semantic segmentation. Our primary contribution is the incorporation of multi-scale CNN in both the encoder and decoder stages, enhancing feature learning capabilities across multiple scales. Further, the bottleneck of the network leverages the ViT to capture long-range high-dimension spatial dependencies, a critical factor often overlooked in conventional CNN-based approaches. We conducted extensive experiments using a public benchmark ultrasound nerve segmentation dataset. Our proposed method was benchmarked against 17 existing baseline methods, and the results underscored its superiority, as it outperformed all competing methods including a 4.6% improvement of Dice compared against TransUNet, 13.0% improvement of Dice against Attention UNet, 10.5% improvement of precision compared against UNet. This research offers significant potential for real-world applications in medical imaging, demonstrating the power of blending CNN and ViT in a unified framework.

2.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37712824

ABSTRACT

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Subject(s)
Actinidia , Humans , Actinidia/genetics , Chlorophyll/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant
3.
Chemosphere ; 343: 140299, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769924

ABSTRACT

In the present work, a cobalt-doped carbon nitride nanotubes (Co-CNt) was synthesized via self-assembly process. Contributed to the narrow band gap, enlarged specific surface area and abundant active sites, Co-CNt has excellent photoelectric properties and superior performance than pristine CN in sulfisoxazole (SIZ) degradation under blue light irradiation, which achieved 100% removal within 40 min. Meanwhile, the system not only exhibited practical applicability by efficiently degrading SIZ, but also generating high levels of H2O2. Moreover, the Co-CNt/visible light system shows superior operability over a wide pH range, micro-concentration contaminants, various anions, water matrices and other sulfonamides with promising catalytic stability and applicability. The contribution of RSs in the degradation process were elucidated based on radical scavenging and spin-trapped tests, clarifying that O2·- and h+ majorly dominated the process. In addition, 4 probable degradation pathways of SIZ were provided and the generated intermediates' toxicity were evaluated. Overall, this study successfully synthesized a self-assembled 1D tubular photocatalyst with Co-doped and demonstrated the potential Co-CNt/visible light system for environmental remediation, providing a promising approach for the development of photocatalysis.


Subject(s)
Anti-Bacterial Agents , Nanotubes , Hydrogen Peroxide , Sulfanilamide , Sulfisoxazole , Catalysis
4.
Nat Commun ; 14(1): 3792, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365155

ABSTRACT

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer's disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.


Subject(s)
Astrocytes , Neurons , Mice , Male , Animals , Mice, Transgenic , Interneurons , Brain , Dependovirus/genetics , Genetic Vectors/genetics
5.
Anal Chim Acta ; 1246: 340898, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36764779

ABSTRACT

Fenpropathrin (FPT) is a typical pyrethroid pesticide that can cause chronic toxicity to humans. Herein, an anti-FPT monoclonal antibody (mAb) was elicited via a novel hapten synthesized by introducing a carboxyl-containing spacer arm in the cyclopropane moiety of FPT. Characterized by enzyme-linked immunosorbent assay (ELISA), the mAb exhibited high affinity and selectivity to FPT with a half-maximal inhibitory concentration of 31.05 µg/L and negligible cross-reactivities with analogs of pyrethroids. Based on the mAb, a fluorescence immunochromatographic assay (FICA) for FPT detection was firstly developed. The detection limit of the FICA is 0.012 mg/kg which is much lower than the maximum residue limit of FPT for food samples. The average recoveries of FPT from spiked food samples by the FICA were 85.0-105.0%, and the obtained results were in good agreement with those of gas chromatography-tandem mass spectrometry. Overall, this work provided a reliable tool suitable for the detection of FPT residue for large-scale samples in a rapid and cost-effective manner.


Subject(s)
Pyrethrins , Vegetables , Humans , Antibodies, Monoclonal/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Immunoassay/methods , Pyrethrins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Limit of Detection
6.
Front Plant Sci ; 13: 1055779, 2022.
Article in English | MEDLINE | ID: mdl-36407629

ABSTRACT

Flesh color is an important target trait in peach [Prunus persica (L.) Batsch] breeding. In this study, two white-fleshed peach cultivars were crossed [Changsong Whitepeach (WP-1) × 'Xiacui'], and their hybrid F1 generation showed color segregation of white flesh (BF1) and yellow flesh (HF1). Metabolome analysis revealed that the flesh color segregation in the hybrid F1 generation was related to the carotenoid content. The decrease in ß-carotene and ß-cryptoxanthin in BF1 flesh and increase in ß-cryptoxanthin oleate, rubixanthin caprate, rubixanthin laurate and zeaxanthin dipalmitate in HF1 flesh contributed to their difference in carotenoid accumulation. Transcriptome analysis demonstrated that compared with BF1, HF1 showed significant up-regulation and down-regulation of ZEP and CCD8 at the core-hardening stage, respectively, while significant down-regulation of NCED in the whole fruit development stage. The down-regulation of NCED might inhibit the breakdown of the violaxanthin and its upstream substances and further promote the accumulation of carotenoids, resulting in yellow flesh. Therefore, NCED may be a key gene controlling the fruit color traits of peach. In this study, targeted metabolomics and transcriptomics were used to jointly explore the mechanism controlling the fruit color of peach, which may help to identify the key genes for the differences in carotenoid accumulation and provide a reference for the breeding of yellow-fleshed peach.

7.
Biosensors (Basel) ; 12(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421124

ABSTRACT

The improper and excessive use in agriculture of chlorpyrifos-methyl (CPSM) and chlorpyrifos-ethyl (CPSE) may affect the health of human beings. Herein, a fluorescence-based immunochromatographic assay (FICA) was developed for the simultaneous determination of CPSM and CPSE. A monoclonal antibody (mAb) with equal recognition of CPSM and CPSE was generated by the careful designing of haptens and screening of hybridoma cells. Instead of labeling fluorescence with mAb, the probe was labeled with goat-anti-mouse IgG (GAM-IgG) and pre-incubated with mAb in the sample. The complex could compete with CPS by coating antigen in the test line. The new format of FICA used goat-anti-rabbit IgG (GAR-IgG) conjugated with rabbit IgG labeled with fluorescence microspheres as an independent quality control line (C line). The novel strategy significantly reduced nonspecific reactions and increased assay sensitivity. Under the optimal conditions, the proposed FICA showed a linear range of 0.015-64 mg/L and limit of detection (LOD) of 0.015 mg/L for both CPSE and CPSM. The average recoveries of CPS from spiked food samples by FICA were 82.0-110.0%. The accuracy was similar to the gas chromatography-tandem mass spectrometry (GC-MS/MS) results. The developed FICA was an ideal on-site tool for rapid screening of CPS residues in foods.


Subject(s)
Chlorpyrifos , Humans , Animals , Rabbits , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry , Immunoassay , Antibodies, Monoclonal , Goats , Immunoglobulin G
8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232635

ABSTRACT

Previous studies indicated that extensive genetic variations could be generated due to polyploidy, which is considered to be closely associated with the manifestation of polyploid heterosis. Our previous studies confirmed that triploid loquats demonstrated significant heterosis, other than the ploidy effect, but the underlying mechanisms are largely unknown. This study aimed to overcome the narrow genetic distance of loquats, increase the genetic variation level of triploid loquats, and systematically illuminate the heterosis mechanisms of triploid loquats derived from two cross combinations. Here, inter-simple sequence repeats (ISSRs) and simple sequence repeats (SSRs) were adopted for evaluating the genetic diversity, and transcriptome sequencing (RNA-Seq) was performed to investigate gene expression as well as pathway changes in the triploids. We found that extensive genetic variations were produced during the formation of triploid loquats. The polymorphism ratios of ISSRs and SSRs were 43.75% and 19.32%, respectively, and almost all their markers had a PIC value higher than 0.5, suggesting that both ISSRs and SSRs could work well in loquat assisted breeding. Furthermore, our results revealed that by broadening the genetic distance between the parents, genetic variations in triploids could be promoted. Additionally, RNA-Seq results suggested that numerous genes differentially expressed between the triploids and parents were screened out. Moreover, KEGG analyses revealed that "photosynthetic efficiency" and "glyco-metabolism" were significantly changed in triploid loquats compared with the parents, which was consistent with the results of physiological indicator analyses, leaf micro-structure observations, and qRT-PCR validation. Collectively, our results suggested that extensive genetic variations occurred in the triploids and that the changes in the "photosynthetic efficiency" as well as "glyco-metabolism" of triploids might have further resulted in heterosis manifestation in the triploid loquats.


Subject(s)
Eriobotrya , Triploidy , Eriobotrya/genetics , Hybrid Vigor/genetics , Plant Breeding , Ploidies
9.
Mol Brain ; 15(1): 13, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093138

ABSTRACT

Retrograde tracers based on viral vectors are powerful tools for the imaging and manipulation of upstream neural networks projecting to a specific brain region, and they play important roles in structural and functional studies of neural circuits. However, currently reported retrograde viral tracers have many limitations, such as brain area selectivity or the inability to retrograde label genetically defined brain-wide projection neurons. To overcome these limitations, a new retrograde tracing method, AAV-PHP.eB assisted retrograde tracing systems (PARTS) based on rabies virus, was established through brain-wide TVA-dependent targeting using an AAV-PHP.eB that efficiently crosses the blood-brain barrier in C57BL/6 J mice, and complementation of EnvA-pseudotyped defective rabies virus that specifically recognizes the TVA receptor. Furthermore, combined with Cre transgenic mice, cell-type-specific PARTS (cPARTS) was developed, which can retrograde label genetically defined brain-wide projection neurons. Our research provides new tools and technical support for the analysis of neural circuits.


Subject(s)
Rabies virus , Animals , Brain , Genetic Vectors , Interneurons , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rabies virus/genetics
10.
PeerJ ; 9: e11705, 2021.
Article in English | MEDLINE | ID: mdl-34306827

ABSTRACT

OBJECTIVE: This study aims to explore a three-dimensional planting mode in orchards and provide theoretical basis for the efficient peach-Morchella planting and soil management after Morchella cultivation. METHODS: Next-generation sequencing was performed to investigate the variations in soil physicochemical properties, enzyme activities and fungal composition under peach-Morchella intercropping for one year and two years, by using the soil without peach-Morchella intercropping as the control group. RESULTS: Peach-Morchella intercropping decreased the soil bulk density, and significantly increased the maximum field capacity, non-capillary porosity and total porosity, organic matter, available potassium and available zinc, which together improved soil structure and soil fertility. Besides, the intercropping mode obviously enhanced soil enzyme activities and mineral absorption and transformation in peach orchard soils. The intercropping also resulted in a decline of soil fungal diversity, and the 2-year soil samples were of higher abundance of Zygomycota. More importantly, peach-Morchella intercropping elevated the yields of both peach and Morchella, bringing about obviously higher economic benefits. CONCLUSION: Continuous peach-Morchella intercropping improves the soil structure and fertility while decreases soil fungal diversity, which can contribute to greater economic benefits of the peach orchard. Our findings shed new light on the intercropping-fungus-soil relationship, and may facilitate the further development of peach-Morchella intercropping.

SELECTION OF CITATIONS
SEARCH DETAIL
...